Download Free Stability Domains Book in PDF and EPUB Free Download. You can read online Stability Domains and write the review.

Stability Domains is an up-to-date account of stability theory with particular emphasis on stability domains. Beyond the fundamental basis of the theory of dynamical systems, it includes recent developments in the classical Lyapunov stability concept, practical stabiliy properties, and a new Lyapunov methodology for nonlinear systems. It also introduces classical Lyapunov and practical stability theory for time-invariant nonlinear systems in general and for complex (interconnected, large scale) nonlinear dynamical systems in particular. This is a complete treatment of the theory of stability domains useful for postgraduates and researchers working in this area of applied mathematics and engineering.
This volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th anniversary of the Courant-Friedrichs-Lewy (CFL) condition. A major result in the field of numerical analysis, the CFL condition has influenced the research of many important mathematicians over the past eight decades, and this work is meant to take stock of its most important and current applications. The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After its Discovery will be of interest to practicing mathematicians, engineers, physicists, and graduate students who work with numerical methods.
This book gathers the main recent results on positive trigonometric polynomials within a unitary framework. The book has two parts: theory and applications. The theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The applications part is organized as a collection of related problems that use systematically the theoretical results.
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.
A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.
The groundbreaking Encyclopedia of Ecology provides an authoritative and comprehensive coverage of the complete field of ecology, from general to applied. It includes over 500 detailed entries, structured to provide the user with complete coverage of the core knowledge, accessed as intuitively as possible, and heavily cross-referenced. Written by an international team of leading experts, this revolutionary encyclopedia will serve as a one-stop-shop to concise, stand-alone articles to be used as a point of entry for undergraduate students, or as a tool for active researchers looking for the latest information in the field. Entries cover a range of topics, including: Behavioral Ecology Ecological Processes Ecological Modeling Ecological Engineering Ecological Indicators Ecological Informatics Ecosystems Ecotoxicology Evolutionary Ecology General Ecology Global Ecology Human Ecology System Ecology The first reference work to cover all aspects of ecology, from basic to applied Over 500 concise, stand-alone articles are written by prominent leaders in the field Article text is supported by full-color photos, drawings, tables, and other visual material Fully indexed and cross referenced with detailed references for further study Writing level is suited to both the expert and non-expert Available electronically on ScienceDirect shortly upon publication
Phage Display in Biotechnology and Drug Discovery, Second Edition provides a comprehensive view of the impact and promise of phage display in drug discovery and biotechnology. Building on the success of its previous edition, the book discusses current theories, principles, and methods in the field and demonstrates applications for peptide phage dis
Highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Includes homework problems, suggestions for research projects, and open-ended questions at the end of each chapter. Written by our successful author who also wrote Continuous System Modeling, a best-selling Springer book first published in the 1991 (sold about 1500 copies).
'The scope and clarity of this book make it accessible and informative to a wide readership. Its messages should be an essential component of the education for all students from secondary school to university... [It] provides a clear and comprehensible account of concepts that can be applied in our individual and collective lives to pursue the promising and secure future to which we all aspire' From the Foreword by Maurice Strong, Chairman of the Earth Council and former Secretary General of the United Nations Conference on Environment and Development (Earth Summit) The most important questions of the future will turn on the relationship between human societies and the natural ecosystems on which we all, in the end, depend. The interactions and interdependencies of the social and natural worlds are the focus of growing attention from a wide range of environmental, social and life sciences. Understanding them is critical to achieving the balance involved in sustainable development. Human Ecology: Basic Concepts for Sustainable Development presents an extremely clear and accessible account of this complex range of issues and of the concepts and tools required to understand and tackle them. Extensively supported by graphics and detailed examples, this book makes an excellent introduction for students at all levels, and for general readers wanting to know why and how to respond to the dilemmas we face.
Adapted from a series of lectures given by the authors, this monograph focuses on radial basis functions (RBFs), a powerful numerical methodology for solving PDEs to high accuracy in any number of dimensions. This method applies to problems across a wide range of PDEs arising in fluid mechanics, wave motions, astro- and geosciences, mathematical biology, and other areas and has lately been shown to compete successfully against the very best previous approaches on some large benchmark problems. Using examples and heuristic explanations to create a practical and intuitive perspective, the authors address how, when, and why RBF-based methods work. The authors trace the algorithmic evolution of RBFs, starting with brief introductions to finite difference (FD) and pseudospectral (PS) methods and following a logical progression to global RBFs and then to RBF-generated FD (RBF-FD) methods. The RBF-FD method, conceived in 2000, has proven to be a leading candidate for numerical simulations in an increasingly wide range of applications, including seismic exploration for oil and gas, weather and climate modeling, and electromagnetics, among others. This is the first survey in book format of the RBF-FD methodology and is suitable as the text for a one-semester first-year graduate class.