Download Free Stability Control And Differential Games Book in PDF and EPUB Free Download. You can read online Stability Control And Differential Games and write the review.

This book presents the proceedings of the International Conference “Stability, Control, Differential Games” (SCDG2019, September 16 – 20, 2019, Yekaterinburg, Russia), organized by the Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences. Discussing the latest advances in the theory of optimal control, stability theory and differential games, it also demonstrates the application of new techniques and numerical algorithms to solve problems in robotics, mechatronics, power and energy systems, economics and ecology. Further, the book includes fundamental results in control theory, stability theory and differential games presented at the conference, as well as a number of chapters focusing on novel approaches in solving important applied problems in control and optimization. Lastly, it evaluates recent major accomplishments, and forecasts developments in various up-and-coming areas, such as hybrid systems, model predictive control, Hamilton–Jacobi equations and advanced estimation algorithms.
A major step in differential games is determining an explicit form of the strategies of players who follow a certain optimality principle. To do this, the associated modification of Bellman dynamic programming problems has to be solved; for some differential games this could be Lyapunov functions whose "arsenal" has been supplied by stability theory. This approach, which combines dynamic programming and the Lyapunov function method, leads to coefficient criteria, or ratios of the game math model parameters with which optimal strategies of the players not only exist but their analytical form can be specified. In this book coefficient criteria are derived for numerous new and relevant problems in the theory of linear-quadratic multi-player differential games. Those criteria apply when the players formulate their strategies independently (non co-operative games) and use non-Nash equilibria or when the game model recognizes noise, perturbation and other uncertainties of which only their ranges are known (differential games under uncertainty). This text is useful for researchers, engineers and students of applied mathematics, control theory and the engineering sciences.
Durable strategies that have prolonged effects are prevalent in real-world situations. Revenue-generating investments, toxic waste disposal, long-lived goods, regulatory measures, coalition agreements, diffusion of knowledge, advertisement and investments to accumulate physical capital are concrete and common examples of durable strategies. This book provides an augmentation of dynamic game theory and advances a new game paradigm with durable strategies in decision-making schemes. It covers theories, solution techniques, and the applications of a general class of dynamic games with multiple durable strategies. Non-cooperative equilibria and cooperative solutions are derived, along with advanced topics including random termination, asynchronous game horizons, and stochastic analysis. The techniques presented here will enable readers to solve numerous practical dynamic interactive problems with durable strategies. This book not only expands the scope of applied dynamic game theory, but also provides a solid foundation for further theoretical and technical advancements. As such, it will appeal to scholars and students of quantitative economics, game theory, operations research, and computational mathematics. "Not too many new concepts have been introduced in dynamic games since their inception. The introduction of the concept of durable strategies changes this trend and yields important contributions to environmental and business applications." Dušan M Stipanović, Professor, University of Illinois at Urbana-Champaign "Before this book, the field simply did not realize that most of our strategies are durable and entail profound effects in the future. Putting them into the mathematical framework of dynamic games is a great innovative effort." Vladimir Turetsky, Professor, Ort Braude College “Durable-strategies Dynamic Games is truly a world-leading addition to the field of dynamic games. It is a much needed publication to tackle increasingly crucial problems under the reality of durable strategies.” Vladimir Mazalov, Director of Mathematical Research, Russian Academy of Sciences & President of the International Society of Dynamic Games
Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.
Definitive work draws on game theory, calculus of variations, and control theory to solve an array of problems: military, pursuit and evasion, athletic contests, many more. Detailed examples, formal calculations. 1965 edition.
This book constitutes the proceedings of the 21st International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2022, held in Petrozavodsk, Russia, in July 2022. The 21 full papers presented together with 6 invited abstracts lectures and 2 tutorial abstracts in this volume were carefully reviewed and selected from 88 submissions. The conference focuses on the following topics: Mathematical programming, bi-level and global optimization, integer programming and combinatorial optimization, approximation algorithms with theoretical guarantees and approximation schemes, heuristics and meta-heuristics, game theory, optimal control, optimization in machine learning and data analysis, and their valuable applications in operations research and economics.
Game theory involves multi-person decision making and differential dynamic game theory has been widely applied to n-person decision making problems, which are stimulated by a vast number of applications. This book addresses the gap to discuss general stochastic n-person noncooperative and cooperative game theory with wide applications to control systems, signal processing systems, communication systems, managements, financial systems, and biological systems. H∞ game strategy, n-person cooperative and noncooperative game strategy are discussed for linear and nonlinear stochastic systems along with some computational algorithms developed to efficiently solve these game strategies.
Over the last two decades there has been a great deal of research into nonlinear dynamic models in economics, finance and the social sciences. This book contains twenty papers that range over very recent applications in these areas. Topics covered include structural change and economic growth, disequilibrium dynamics and economic policy as well as models with boundedly rational agents. The book illustrates some of the most recent research tools in this area and will be of interest to economists working in economic dynamics and to mathematicians interested in seeing ideas from nonlinear dynamics and complexity theory applied to the economic sciences.