Download Free Stability And Oscillations In Delay Differential Equations Of Population Dynamics Book in PDF and EPUB Free Download. You can read online Stability And Oscillations In Delay Differential Equations Of Population Dynamics and write the review.

This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.
This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.
These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to thank the students who took the course and consequently gave me the opportunity and stimulus to organize these notes. Special thanks go to Professor Paul Fife and Dr. George Swan who also sat in the course and were quite helpful with their comments and observations. Also deserving thanks are Professor Robert O'Malley and Ms. Louise C. Fields of the Applied Mathematics Program here at the University of Arizona. Ms. Fields did an outstandingly efficient and accu rate typing of the manuscript.
Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.
This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.
This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.
An overall solution to the (robust) stability analysis and stabilisation problem of linear time-delay systems.
The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.
The aim of this volume is to introduce new topics on the areas of difference, differential, integrodifferential and integral equations, evolution equations, control and optimisation theory, dynamic system theory, queuing theory and electromagnetism and their applications.