Download Free Stability And Dwell Time Analysis Of Switched Time Delay Systems Book in PDF and EPUB Free Download. You can read online Stability And Dwell Time Analysis Of Switched Time Delay Systems and write the review.

This book, written by experts in the field, is based on the latest research on the analysis and synthesis of switched time-delay systems. It covers the stability, filtering, fault detection and control problems, which are studied using the average dwell time approach. It presents both the continuous-time and discrete-time systems and provides useful insights and methods, as well as practical algorithms that can be considered in other complex systems, such as neuron networks and genetic regulatory networks, making it a valuable resource for researchers, scientists and engineers in the field of system sciences and control communities.
This will be the most up-to-date book in the area (the closest competition was published in 1990) This book takes a new slant and is in discrete rather than continuous time
In many practical applications we deal with a wide class of dynamical systems that are comprised of a family of continuous-time or discrete-time subsystems and a rule orchestrating the switching between the subsystems. This class of systems is frequently called switched system. Switched linear systems provide a framework that bridges the linear systems and the complex and/or uncertain systems. The mo- vation for investigating this class of systems is twofold: ?rst, it has an inherent multi-modal behavior in the sense that several dynamical subsystems are required to describe their behavior, which might depend on various environmental factors. Second, the methods of intelligent control systems are based on the idea of swit- ing between different controllers. Looked at in this light, switched systems provide an integral framework to deal with complex system behaviors such as chaos and multiple limit cycles and gain more insights into powerful tools such as intelligent control, adaptive control, and robust control. Switched systems have been inves- gated for a long time in the control and systems literature and have increasingly attracted more attention for the past three decades. The number of journal articles, books, and conference papers have grown exponentially and a number of fundam- tal concepts and powerful tools have been developed. It has been pointed out that switched systems have been studied from various viewpoints.
Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.
Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in control systems and to professionals working in any of the many fields where systems are affected by saturation including: chemical and pharmaceutical batch processing, manufacturing (for example in steel rolling), air-traffic control, and the automotive and aerospace industries.
Positive systems are an important class of systems that frequently arise in application areas, such as in the chemical process industry, electronic circuit design, communication networks, and biology. The study of the stability of such systems differs from standard systems in that the analysis focuses only on the trajectories generated under positivity constraints. Switched positive systems also arise in a variety of applications. Examples can be found in TCP congestion control, in processes described by non-homogeneous Markov chains, in image processing, in biochemical networks, and so on. In comparison to general switched systems, that have received a lot of attention in the past years, the theory for positive switched systems is still in its infancy. Switched Positive Linear Systems studies the stability, performance evaluation, stabilization via switching control, and optimal control of (continuous-time and linear) positive switched systems. It provides a review of the results that have already been established in the literature. Other results, especially those related to norm computation and optimization, are new and are presented integrated with previous ones. Switched Positive Linear Systems provides a comprehensive and timely introduction to the study of such systems. Readers who are new to the topic will find everything required to understand such systems in a concise and accessible form.
This book focuses on the stability analysis of Markovian jump systems (MJSs) with various settings and discusses its applications in several different areas. It also presents general definitions of the necessary concepts and an overview of the recent developments in MJSs. Further, it addresses the general robust problem of Markovian jump linear systems (MJLSs), the asynchronous stability of a class of nonlinear systems, the robust adaptive control scheme for a class of nonlinear uncertain MJSs, the practical stability of MJSs and its applications as a modelling tool for networked control systems, Markovian-based control for wheeled mobile manipulators and the jump-linear-quadratic (JLQ) problem of a class of continuous-time MJLSs. It is a valuable resource for researchers and graduate students in the field of control theory and engineering.
This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying parameters in different sense of disturbances. The asynchronous switching problem, where there is time lag between the switching of the currently activated system mode and the controller/filter to be designed, is investigated in Chapter 6. The systems with various time delays under typical time-dependent switching signals are addressed in Chapter 7.
This book includes original, peer-reviewed research papers from the ICAUS 2021, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2021 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.
This book focuses on the recent development of methodologies and computation methods in mathematical and statistical modelling, computational science and applied mathematics. It emphasizes the development of theories and applications, and promotes interdisciplinary endeavour among mathematicians, statisticians, scientists, engineers and researchers from other disciplines. The book provides ideas, methods and tools in mathematical and statistical modelling that have been developed for a wide range of research fields, including medical, health sciences, biology, environmental science, engineering, physics and chemistry, finance, economics and social sciences. It presents original results addressing real-world problems. The contributions are products of a highly successful meeting held in August 2017 on the main campus of Wilfrid Laurier University, in Waterloo, Canada, the International Conference on Applied Mathematics, Modeling and Computational Science (AMMCS-2017). They make this book a valuable resource for readers interested not only in a broader overview of the methods, ideas and tools in mathematical and statistical approaches, but also in how they can attain valuable insights into problems arising in other disciplines.