Download Free Stability Analysis And Control Design For Linear Systems Subject To Nested Saturation Book in PDF and EPUB Free Download. You can read online Stability Analysis And Control Design For Linear Systems Subject To Nested Saturation and write the review.

This monograph details basic concepts and tools fundamental for the analysis and synthesis of linear systems subject to actuator saturation and developments in recent research. The authors use a state-space approach and focus on stability analysis and the synthesis of stabilizing control laws in both local and global contexts. Different methods of modeling the saturation and behavior of the nonlinear closed-loop system are given special attention. Various kinds of Lyapunov functions are considered to present different stability conditions. Results arising from uncertain systems and treating performance in the presence of saturation are given. The text proposes methods and algorithms, based on the use of linear programming and linear matrix inequalities, for computing estimates of the basin of attraction and for designing control systems accounting for the control bounds and the possibility of saturation. They can be easily implemented with mathematical software packages.
This monograph investigates the stability and performance of control systems subject to actuator saturation. It presents new results obtained by both improving the treatment of the saturation function and constructing new Lyapunov functions. In particular, two improved treatments of the saturation function are described that exploit the intricate structural properties of its traditional convex hull representation. The authors apply these treatments to the estimation of the domain of attraction and the finite-gain L2 performance by using the quadratic Lyapunov function and the composite quadratic Lyapunov function. Additionally, an algebraic computation method is given for the exact determination of the maximal contractively invariant ellipsoid, a level set of a quadratic Lyapunov function. The authors conclude with a look at some of the problems that can be solved by the methods developed and described throughout the book. Numerous step-by-step descriptions, examples, and simulations are provided to illustrate the effectiveness of their results. Stability and Performance of Control Systems with Actuator Saturation will be an invaluable reference for graduate students, researchers, and practitioners in control engineering and applied mathematics.
Recently, the subject of nonlinear control systems analysis has grown rapidly and this book provides a simple and self-contained presentation of their stability and feedback stabilization which enables the reader to learn and understand major techniques used in mathematical control theory. In particular: the important techniques of proving global stability properties are presented closely linked with corresponding methods of nonlinear feedback stabilization; a general framework of methods for proving stability is given, thus allowing the study of a wide class of nonlinear systems, including finite-dimensional systems described by ordinary differential equations, discrete-time systems, systems with delays and sampled-data systems; approaches to the proof of classical global stability properties are extended to non-classical global stability properties such as non-uniform-in-time stability and input-to-output stability; and new tools for stability analysis and control design of a wide class of nonlinear systems are introduced. The presentational emphasis of Stability and Stabilization of Nonlinear Systems is theoretical but the theory’s importance for concrete control problems is highlighted with a chapter specifically dedicated to applications and with numerous illustrative examples. Researchers working on nonlinear control theory will find this monograph of interest while graduate students of systems and control can also gain much insight and assistance from the methods and proofs detailed in this book.
Unifying two decades of research, this book is the first to establish a comprehensive foundation for a systematic analysis and design of linear systems with general state and input constraints. For such systems, which can be used as models for most nonlinear systems, the issues of stability, controller design, additonal constraints, and satisfactory performance are addressed. The book is an excellent reference for practicing engineers, graduate students, and researchers in control systems theory and design. It may also serve as an advanced graduate text for a course or a seminar in nonlinear control systems theory and design in applied mathematics or engineering departments. Minimal prerequisites include a first graduate course in state-space methods as well as a first course in control systems design.
This book deals with a combination of two main problems for the first time. They are saturation on control and on the rate (or increment) of the control, and the solution of unsymmetrical saturation on the control by LMIs. It treats linear systems in state space form, in both the continuous- and discrete-time domains. Necessary and sufficient conditions are derived for autonomous linear systems with constrained state increment or rate, such that the system evolves respecting incremental or rate constraints if any. A pole assignment technique is then used to solve the problem, giving stabilizing state feedback controllers that respect non-symmetrical constraints on control alone or on both control and its increment or rate. Illustrative examples show the application of these methods on academic examples or on such real plant models as the double integrator system. This problem is then extended to various others including: systems with constraints and perturbations; singular systems with constrained control; systems with unsymmetrical saturations; saturated systems with delay, and 2-D systems with saturations. The solutions obtained are of two types: necessary and sufficient conditions solved with linear programming techniques; and sufficient conditions under LMIs. A new approach extends existing techniques for dealing with symmetrical saturations to take direct account of unsymmetrical saturations into account with LMIs. This tool enables the authors to obtain new results on continuous- and discrete-time systems. The book uses illustrative examples and figures and provides many comparisons with existing results. Systems theoreticians interested in multidimensional systems and practitioners working with saturated and constrained controllers will find the research and background presented in Saturated Control of Linear Systems to be of considerable interest in helping them overcome problems with their plant and in stimulating further research.
This book presents special systems derived from industrial models, including the complex saturation nonlinear functions and the delay nonlinear functions. It also presents typical methods, such as the classical Liapunov and Integral Inequalities methods. Providing constructive qualitative and stability conditions for linear systems with saturated inputs in both global and local contexts, it offers practitioners more concise model systems for modern saturation nonlinear techniques, which have the potential for future applications. This book is a valuable guide for researchers and graduate students in the fields of mathematics, control, and engineering.
This book presents basic research on delta operator systems (DOS) with actuator saturation. It proposes null controllable regions of delta operator systems, introduces the enlarging of the domain of attraction and analyzes the performance of DOSs subject to actuator saturation. It also discusses the domain of attraction on different systems in delta domain, and investigates the applications in complicated systems using delta operator approaches.
This book gives a unified and unique presentation of low gain and high gain design methodologies. In particular the development of low gain feedback design methodology is discussed. The development of both low and high gain feedback enhances the industrial relevance of modern control theory, by providing solutions to a wide range of problems that are of paramount practical importance. This detailed monograph provides the reader with a comprehensive insight into these problems: research results are examined and solutions to the problems are considered. Compared to that of high gain feedback, the power and significance of low gain feedback is not as widely recognized. The purpose of this monograph is to present some recent developments in low gain feedback, and its applications. Several low gain techniques are examined, including the control of linear systems with saturating actuators, semi-global stabilization of minimum phase input-output linearizable systems and H2 suboptimal control.