Download Free Spin Viscosity Effects In Planar Ferrofluid Couette Flow Of Ferrofluids Book in PDF and EPUB Free Download. You can read online Spin Viscosity Effects In Planar Ferrofluid Couette Flow Of Ferrofluids and write the review.

We have obtained analytical solutions for the flow of two layers of immiscible ferrofluids of different thickness between two parallel plates. The flow is mainly driven by the generation of antisymmetric stresses and couple stresses in the ferrofluids due to the application of a uniform rotating magnetic field. The translational velocity ... and spin velocity ... profiles were obtained for the zero spin viscosity and non-zero spin viscosity cases and the effect of applied pressure gradient on the flow was studied. The interfacial linear and internal angular momentum balance equations derived for the airferrofluid interface case are extended for the case when there is a ferrofluid-ferrofluid interface to obtain the velocity profiles. The magnitude of the translational velocity is directly proportional to the frequency of the applied magnetic field and the square of the magnetic field amplitude. The spin velocity is in the direction of the rotating magnetic field and its direction remains the same at lower values of applied pressure gradient. The direction of translational velocity depends on the balance between the magnitudes of vorticity, body torque, spin velocity and diffusion of internal angular momentum, however at higher values of applied pressure gradient, the pressure gradient dominates the flow. This work shows the importance of surface stresses in driving flows in ferrofluids.
(Cont.) Contrary to the commonly held view in the literature, spin-up flows develop in rotating uniform magnetic fields even in the absence of spin diffusion effects. Including the linear and spin velocity terms in the magnetization relaxation equation results in non-zero spin-up flow. Numerical solutions using FEMLAB software are shown for flow profiles with zero and non-zero spin viscosity. Fitting numerical simulations to velocity profile ultrasound measurements allows the estimation of the magnetization relaxation time and the spin viscosity for Ferrotec Corp.'s MSG Wll and EMG705 water-based ferrofluids.
When ferrofluid in a cylindrical container is subjected to a rotating azimuthally directed magnetic field, the fluid "spins up" into an almost rigid-body rotation where ferrofluid nanoparticles have both a linear and an angular "spin" velocity. Flow observations are often limited to the ferrofluid free surface due to the opaque nature of the ferrofluid and the surface flow can spin-up in the same or opposite directions to the direction of the rotating field. The mechanisms governing this flow have been attributed to surface driven flows that depend on the shape of the meniscus formed by the free surface. However, bulk flow experiments using ultrasound velocimetry show that even in the presence of a stationary cover, bulk ferrofluid flows would result when a rotating magnetic field was applied. The mechanisms explaining the bulk flows have been attributed by some authors to being a result of spin diffusion theory while others believe that non-uniform magnetic properties drive the flow, with both theories being rigorously explored in this thesis. This thesis applies ferrohydrodynamic analysis to extended fluid flow equations driven by magnetization forces and torques on the ferrofluid, Maxwell's equations relating magnetization, magnetic field and ferrofluid flow, and a Langevin magnetization relaxation constitutive law including the effects of fluid linear and spin velocities. Some key concepts investigated in this analysis are: (1) Ferrofluid filled cylindrical vessels of finite height placed within a uniform magnetic field result in non-uniform magnetic fields inside the ferrofluid due to demagnetization effects that can drive the flow; (2) A spherical vessel of ferrofluid in a uniform magnetic field has a resulting uniform magnetic field unless there is a spatial variation of magnetic properties, induced in this thesis by an external source of non-uniform magnetic field from a current carrying coil or a permanent magnet; and (3) COMSOL Multiphysics spin-diffusion modeling shows that spin viscosity can also initiate a flow due to spin-velocity boundary conditions which can hinder magnetic nanoparticle rotation near a wall or allow particles to roll along a wall due to flow vorticity. Ferrofluid spin-up flows were investigated that take into account demagnetizing effects associated with the shape of the container. The experiments conducted in this thesis involve using a sphere of ferrofluid in a uniform rotating field since a sphere has uniform and equal demagnetizing factors in all three Cartesian directions. The uniform rotating magnetic field is generated by two orthogonally placed spherical coils, known as "fluxballs" that generate a uniform magnetic field in the horizontal and vertical directions inside the fluxballs and a dipole field outside. By driving the coils with sinusoidal signals that are out of phase in time by 90 degrees a uniform rotating field is generated inside the test chamber containing the sphere of ferrofluid. The test sphere of ferrofluid is placed at the center of the larger surrounding "fluxball" machine. Negligible flows are measured within the ferrofluid filled sphere using ultrasound velocimetry in the "fluxball" machine with a uniform rotating magnetic field. COMSOL simulations using non-zero values of spin-viscosity, with a zero spin-velocity boundary condition at the outer wall, predict measurable flow while simulations setting spin-viscosity to zero result in negligible flow. Previously published values of spin-viscosity measured in cylindrical vessels are much larger than values allowed by kinetic theory because the flows, from which they were determined, are actually due to the demagnetizing field effects and not due to spin-diffusion. Experiments were also performed by partially filling the test sphere with ferrofluid but only 2/3 full, resulting in significant flows due to non-uniform magnetic fields from spatially dependent demagnetizing factors and possibly free surface effects. Ultrasound velocimetry measurements were also performed with a small permanent magnet or a DC/AC excited small coil on top of the ferrofluid filled test sphere, causing a nonuniform DC or AC magnetic field within the ferrofluid filled test sphere in addition to the uniform rotating magnetic field imposed by the fluxball coils. With an imposed non-uniform magnetic field component from magnet or coil, complex measurable flows with strong vortices are obtained. Formation of vortices is also confirmed in COMSOL simulations of an infinitely long cylinder subjected to a uniform rotating field and the field from an infinitely long permanent magnet. These measurements demonstrate that a non-uniform magnetic field or a non-uniform distribution of magnetic properties drive the flow. The spin-up ferrofluid flow in a rotating uniform externally applied field is highly dependent on the shape of the container due to demagnetizing effects. These demagnetizing effects in a finite-height ferrofluid filled cylindrical container create a non-uniform field inside the ferrofluid that drives the flow and is the cause for previously observed flows in the classic cylindrical spin-up flow experiments. COMSOL Multiphysics simulations applied to a cylinder of infinite height filled with ferrofluid show that spin-diffusion theory cannot be the dominant mechanism for spin-up flows as fitting the COMSOL analysis to measurements result in unphysically large values of spin viscosity. The unphysically large values of spin viscosity are obtained by attributing spin-up flow to be due to spin-diffusion alone rather than the correct non-uniform magnetic field effects. In conclusion, this thesis, through experimental results and numerical simulations, proves that non-uniform magnetic properties within the ferrofluid and not spin-diffusion theory is the driving mechanism for the measured flow.
Suspensions of magnetic nanoparticles or ferrofluids can be effectively controlled by magnetic fields, which opens up a fascinating field for basic research into fluid dynamics as well as a host of applications in engineering and medicine. The introductory chapter provides the reader with basic information on the structure, and magnetic and viscous properties of ferrofluids. The bulk of this monograph is based on the author's own research activity and deals with ferrohydrodynamics, especially with the magnetoviscous effects. In particular, the author studies in detail the interparticle interactions so far often neglected but of great importance in concentrated ferrofluids. The basic theory and the most recent experimental findings are presented, making the book interesting reading for physicists or engineers interested in smart materials.
The behavior and dynamics of magnetic fluids receive a coherent, comprehensive treatment in this high-level study. One of the best classical introductions to the subject, the text covers most aspects of particle interaction, from magnetic repulsion to quasi-stable equilibriums and ferrohydrodynamic instabilities. Suitable for graduate students and researchers in physics, engineering, and applied mathematics. 1997 edition.
Magnetic control of the properties and the flow of liquids is a challenging field for basic research and for applications. This book is meant to be both an introduction to, and a state-of-the-art review of, this topic. Written in the form of a set of lectures and tutorial reviews, the book addresses the synthesis and characterization of magnetic fluids, their hydrodynamical description and their rheological properties. The book closes with an account of magnetic drug targeting.
Seldom does a physical system, particularly one as apparently simple as the flow of a Newtonian fluid between concentric rotating cylinders, retain the interest of scientists, applied mathematicians and engineers for very long. Yet, as this volume goes to press it has been nearly 70 years since G. I. Taylor's outstanding experimental and theoretical study of the linear stability of this flow was published, and a century since the first experiments were performed on rotating cylinder viscometers. Since then, the study of this system has progressed enormously, but new features of the flow patterns are still being uncovered. Interesting variations on the basic system abound. Connections with open flows are being made. More complex fluids are used in some experiments. The vigor of the research going on in this particular example of nonequilibrium systems was very apparent at the NATO Advanced Research Workshop on "Ordered and Turbulent Patterns in Taylor Couette Flow," held in Columbus, Ohio, USA May 22-24, 1991. A primary goal of this ARW was to bring together those interested in pattern formation in the classic Taylor Couette problem with those looking at variations on the basic system and with those interested in related systems, in order to better define the interesting areas for the future, the open questions, and the features common (and not common) to closed and open systems. This volume contains many of the contributions presented during the workshop.