Download Free Spin Labeling Book in PDF and EPUB Free Download. You can read online Spin Labeling and write the review.

Biological magnetic resonance (NMR and EPR) is a rapidly expanding area of research with much activity in most universities and research institutions. International conferences are held biennially with an increasing number of participants. With the introduction of sophisticated and continuously im proving instrumentation, biological magnetic resonance is approaching the state of a common physical method in biochemical, biomedical, and bio logical research. The lack of monograpbs on the subject had been con spicuous for a long time. This gap started to close only recently. However, because of the rapid expansion and intensive research, many texts are dated by the time of their appearance. Therefore we have undertaken the editing of a series that is intended to provide the practicing chemist, biochemist, or biologist with the advances and progress in selected contemporary topics. In seeking to make the series as authoritative as possible, we have invited authors who have not only made significant contributions but who are also currently active in their fields. We hope that their expertise as well as their first hand experience as reflected in the chapters of this volume will be of benefit to the reader, inter alia, in planning his own experiments and in critically evaluating the current literature.
Spin Labeling II: Theory and Applications covers spin-labeled biopolymers and its importance to both macromolecular modeling as well as some industrially based problems. The book discusses the methods of saturation-transfer spectroscopy; the spin-probe-spin-label method; and new aspects of nitroxide chemistry. The text also describes the spin-labeled synthetic polymers; the impact that the technique of spin labeling has on pharmacology and on biomedicine; as well as the applications of spin labeling to nucleic acids. Chemists, pharmacologists, biochemists, and people working in the field of biological magnetic resonance will find the book invaluable.
Spin Labeling: Theory and Applications covers the background, theory, and applications of spin labeling. The book starts by providing an introduction about electron spin resonance in biology and a reporter group technique of spin labelling. The text then describes the principles and theories of magnetic resonance; the theory of slow tumbling ESR spectra for nitroxides; and the influence of electron-electron interactions on the appearance of the electron resonance spectrum. The chemistry of spin labels; the molecular structures of nitroxides; the instrumental aspects of spin labeling; as well as the use of spin labels for studying the structure and function of enzymes are also considered. The book further discusses spin-label-induced nuclear magnetic resonance relaxation studies of enzymes; anisotropic motion in liquid crystalline structures; and the use of oriented lipid systems as model membranes. The text also looks into the application of lipid spin labels in biological membranes as well as the molecular motion in biological membranes. Chemists, molecular biologists, chemical physicists, people involved in the study of physical spectrometry, and graduate students taking related courses will find the book invaluable.
We present here the second issue devoted entirely to the spin-labeling technique as part of Biological Magnetic Resonance. Volume 14 commemorates a modifi- tion in our editorial policy with the retirement of my esteemed coeditor, Jacques Reuben. From thisjuncture into the future, each issue will focus on some special topic in magnetic resonance. Each volume will be organized in most cases by guest editors, for example forthcoming issues will address the following topics: in vivo magnetic resonance (P. Robitaille and L. J. Berliner, eds. ) Modern techniques in proton NMR ofproteins (R. Krishna and L. J. Berliner, eds. ) Instrumental techniques of EPR (C. Bender and L. J. Berliner, eds. ) Thecurrent volume, Spin Labeling: The NextMillennium, presents an excellent collection of techniques and applications that evolved during the past decade since the last volume, volume 8 (1989). Someobvious omissions, such as multiquantum EPR and very high-frequency FT-ESR were unfortunately not possible for this volume. Perhaps they will appear in Spin Labeling: 2001. Lastly it is a pleasure to honor two scientists whose contributions were both pioneering and pivotal to the spin label technique: Professor Eduard G. Rozantsev (Moscow), whose synthetic feats in nitroxyl chemistry set the broad stage for a versatile catalog of labels; and Professor Harden M. McConnell, last year's Int- national ESR (EPR) Society Gold Medalist, who conceived and developed the spin label technique to address many biological problems (proteins, enzymes, m- branes, cells, immune response, etc. ). Lawrence J.
We present this special topics volume on an area which has not received thorough coverage for over 12 years. Spin Labeling: Theory and Applications represents a complete update on new theoretical aspects and applications of the spin-label method. In the "line-shape theory" sections, we are especially pleased to include an IBM-compatible diskette supplied by David Schneider and Jack Freed which contains fast, accurate, ready-to-use software for slow-motion simulations. Barney Bales discusses inhomogeneous broadening phenomena in detail. Several developments in techniques and interpretation in saturation transfer spectroscopy have appeared since the publica tion of Spin Labeling II: Theory and Applications (L. J. Berliner, ed., Academic Press, 1979). We have included an up-to-date chapter on spin-label applications by M. A. Hemminga and P. A. de Jager. By incorporating 15N and deuterium into nitroxide spin labels, several unique advantages are derived in line-shape analysis. Albert Beth and Bruce Robinson have contributed a detailed chapter on the analysis of these labels in the slow-motion regime while Jane Park and Wolfgang Trommer present the advantages for specific biochemical examples in our "applications" section. Derek Marsh's contri bution on spin-label spectral analysis may be regarded as a summary chapter which touches on several of the detailed spectral analysis methods described in the earlier chapters.
Spin-label electron paramagnetic resonance (EPR) spectroscopy is a versatile molecular probe method that finds wide application in molecular biophysics and structural biology. This book provides the first comprehensive summary of basic principles, spectroscopic properties, and use for studying biological membranes, protein folding, supramolecular structure, lipid-protein interactions, and dynamics. The contents begin with discussion of fundamental theory and practice, including static spectral parameters and conventional continuous-wave (CW) spectroscopy. The development then progresses, via nonlinear CW-EPR for slower motions, to the more demanding time-resolved pulse EPR, and includes an in-depth treatment of spin relaxation and spectral line shapes. Once the spectroscopic fundamentals are established, the final chapters acquire a more applied character. Extensive appendices at the end of the book provide detailed summaries of key concepts in magnetic resonance and chemical physics for the student reader and experienced practitioner alike. Key Features: Indispensable reference source for the understanding and interpretation of spin-label spectroscopic data in its different aspects. Tables of fundamental spectral parameters are included throughout. Forms the basis for an EPR graduate course, extending up to a thorough coverage of advanced topics in Specialist Appendices. Includes all necessary theoretical background. The primary audience is research workers in the fields of molecular biophysics, structural biology, biophysical chemistry, physical biochemistry and molecular biomedicine. Also, physical chemists, polymer physicists, and liquid-crystal researchers will benefit from this book, although illustrative examples used are often taken from the biomolecular field. Readers will be postgraduate researchers and above, but include those from other disciplines who seek to understand the primary spin-label EPR literature.
This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.
We present here the second issue devoted entirely to the spin-labeling technique as part of Biological Magnetic Resonance. Volume 14 commemorates a modifi- tion in our editorial policy with the retirement of my esteemed coeditor, Jacques Reuben. From thisjuncture into the future, each issue will focus on some special topic in magnetic resonance. Each volume will be organized in most cases by guest editors, for example forthcoming issues will address the following topics: in vivo magnetic resonance (P. Robitaille and L. J. Berliner, eds. ) Modern techniques in proton NMR ofproteins (R. Krishna and L. J. Berliner, eds. ) Instrumental techniques of EPR (C. Bender and L. J. Berliner, eds. ) Thecurrent volume, Spin Labeling: The NextMillennium, presents an excellent collection of techniques and applications that evolved during the past decade since the last volume, volume 8 (1989). Someobvious omissions, such as multiquantum EPR and very high-frequency FT-ESR were unfortunately not possible for this volume. Perhaps they will appear in Spin Labeling: 2001. Lastly it is a pleasure to honor two scientists whose contributions were both pioneering and pivotal to the spin label technique: Professor Eduard G. Rozantsev (Moscow), whose synthetic feats in nitroxyl chemistry set the broad stage for a versatile catalog of labels; and Professor Harden M. McConnell, last year's Int- national ESR (EPR) Society Gold Medalist, who conceived and developed the spin label technique to address many biological problems (proteins, enzymes, m- branes, cells, immune response, etc. ). Lawrence J.
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.