Download Free Speech Recognition Algorithms Using Weighted Finite State Transducers Book in PDF and EPUB Free Download. You can read online Speech Recognition Algorithms Using Weighted Finite State Transducers and write the review.

This book introduces the theory, algorithms, and implementation techniques for efficient decoding in speech recognition mainly focusing on the Weighted Finite-State Transducer (WFST) approach. The decoding process for speech recognition is viewed as a search problem whose goal is to find a sequence of words that best matches an input speech signal. Since this process becomes computationally more expensive as the system vocabulary size increases, research has long been devoted to reducing the computational cost. Recently, the WFST approach has become an important state-of-the-art speech recognition technology, because it offers improved decoding speed with fewer recognition errors compared with conventional methods. However, it is not easy to understand all the algorithms used in this framework, and they are still in a black box for many people. In this book, we review the WFST approach and aim to provide comprehensive interpretations of WFST operations and decoding algorithms to help anyone who wants to understand, develop, and study WFST-based speech recognizers. We also mention recent advances in this framework and its applications to spoken language processing. Table of Contents: Introduction / Brief Overview of Speech Recognition / Introduction to Weighted Finite-State Transducers / Speech Recognition by Weighted Finite-State Transducers / Dynamic Decoders with On-the-fly WFST Operations / Summary and Perspective
Finite-state devices, such as finite-state automata, graphs, and finite-state transducers, have been present since the emergence of computer science and are extensively used in areas as various as program compilation, hardware modeling, and database management. Although finite-state devices have been known for some time in computational linguistics, more powerful formalisms such as context-free grammars or unification grammars have typically been preferred. Recent mathematical and algorithmic results in the field of finite-state technology have had a great impact on the representation of electronic dictionaries and on natural language processing, resulting in a new technology for language emerging out of both industrial and academic research. This book presents a discussion of fundamental finite-state algorithms, and constitutes an approach from the perspective of natural language processing.
This handbook plays a fundamental role in sustainable progress in speech research and development. With an accessible format and with accompanying DVD-Rom, it targets three categories of readers: graduate students, professors and active researchers in academia, and engineers in industry who need to understand or implement some specific algorithms for their speech-related products. It is a superb source of application-oriented, authoritative and comprehensive information about these technologies, this work combines the established knowledge derived from research in such fast evolving disciplines as Signal Processing and Communications, Acoustics, Computer Science and Linguistics.
Formal Languages and Applications provides a comprehensive study-aid and self-tutorial for graduates students and researchers. The main results and techniques are presented in an readily accessible manner and accompanied by many references and directions for further research. This carefully edited monograph is intended to be the gateway to formal language theory and its applications, so it is very useful as a review and reference source of information in formal language theory.
The purpose of this Handbook is to highlight both theory and applications of weighted automata. Weighted finite automata are classical nondeterministic finite automata in which the transitions carry weights. These weights may model, e. g. , the cost involved when executing a transition, the amount of resources or time needed for this,or the probability or reliability of its successful execution. The behavior of weighted finite automata can then be considered as the function (suitably defined) associating with each word the weight of its execution. Clearly, weights can also be added to classical automata with infinite state sets like pushdown automata; this extension constitutes the general concept of weighted automata. To illustrate the diversity of weighted automata, let us consider the following scenarios. Assume that a quantitative system is modeled by a classical automaton in which the transitions carry as weights the amount of resources needed for their execution. Then the amount of resources needed for a path in this weighted automaton is obtained simply as the sum of the weights of its transitions. Given a word, we might be interested in the minimal amount of resources needed for its execution, i. e. , for the successful paths realizing the given word. In this example, we could also replace the “resources” by “profit” and then be interested in the maximal profit realized, correspondingly, by a given word.
This handbook plays a fundamental role in sustainable progress in speech research and development. With an accessible format and with accompanying DVD-Rom, it targets three categories of readers: graduate students, professors and active researchers in academia, and engineers in industry who need to understand or implement some specific algorithms for their speech-related products. It is a superb source of application-oriented, authoritative and comprehensive information about these technologies, this work combines the established knowledge derived from research in such fast evolving disciplines as Signal Processing and Communications, Acoustics, Computer Science and Linguistics.
The Application of Hidden Markov Models in Speech Recognition presents the core architecture of a HMM-based LVCSR system and proceeds to describe the various refinements which are needed to achieve state-of-the-art performance.
This book discusses large margin and kernel methods for speech and speaker recognition Speech and Speaker Recognition: Large Margin and Kernel Methods is a collation of research in the recent advances in large margin and kernel methods, as applied to the field of speech and speaker recognition. It presents theoretical and practical foundations of these methods, from support vector machines to large margin methods for structured learning. It also provides examples of large margin based acoustic modelling for continuous speech recognizers, where the grounds for practical large margin sequence learning are set. Large margin methods for discriminative language modelling and text independent speaker verification are also addressed in this book. Key Features: Provides an up-to-date snapshot of the current state of research in this field Covers important aspects of extending the binary support vector machine to speech and speaker recognition applications Discusses large margin and kernel method algorithms for sequence prediction required for acoustic modeling Reviews past and present work on discriminative training of language models, and describes different large margin algorithms for the application of part-of-speech tagging Surveys recent work on the use of kernel approaches to text-independent speaker verification, and introduces the main concepts and algorithms Surveys recent work on kernel approaches to learning a similarity matrix from data This book will be of interest to researchers, practitioners, engineers, and scientists in speech processing and machine learning fields.
A practical and comprehensive guide on how to apply Bayesian machine learning techniques to solve speech and language processing problems.