Download Free Spectrum Utilization Using Game Theory Book in PDF and EPUB Free Download. You can read online Spectrum Utilization Using Game Theory and write the review.

Spectrum utilization is the most recent communications issue which takes great deal of attention from communication researchers where most of the efforts have been dedicated for spectral efficient utilization. Spectrum sharing is one of the solutions considered in the problem of lack of available frequency for new communication services which are unlicensed. In this work we propose an optimal method for spectrum utilization to increase spectral efficiency. It considers the problem of spectrum holes found in Primary User's (PU) band and detected using one of the spectral sensing methods. The solution is formulated with the help of Game theory approach in such a way that the primary user who has unoccupied frequency can share it with a group of secondary users (SU) in a competitive way. One of the SUs will be a secondary primary user (SPU), share available frequency from PU then offer his sharing to serve other SUs in different rate of sharing. Each user in the group of secondary users has a chance to be secondary primary user depending on reputation of each SU. Enhancing reputation is the only way for any SU to assure a share in the spectrum where it considered the factor of increasing or decreasing rate of sharing as well as factor of being SPU or an ordinary SU. A theoretical non-cooperative game model is introduced in a comparison with a proposed non-dynamic technique which depends on number of subscribers who occupy frequency in each time period. Multi-users compete on sharing the frequency from one of the users who offers sharing at a time when he has low number of subscribers that occupy his band. It is found that non-dynamic sharing results in inefficient spectrum utilization which is one of the reasons of spectrum scarcity where this resource is allocated in fixed way. Spectrum sharing using game theory solves this problem by its ability to make users compete to gain highest rate of spectrum allocation according to the real requirement of each user at each time interval. The problem of urgent case is also discussed when the primary user comes back to using his band which is the specific band of sharing with the secondary users group. SPU makes it easy to unload the required band from multi-users because PU does not need to request his band from each SU in the group.
This brief examines issues of spectrum allocation for the limited resources of radio spectrum. It uses a game-theoretic perspective, in which the nodes in the wireless network are rational and always pursue their own objectives. It provides a systematic study of the approaches that can guarantee the system’s convergence at an equilibrium state, in which the system performance is optimal or sub-optimal. The author provides a short tutorial on game theory, explains game-theoretic channel allocation in clique and in multi-hop wireless networks and explores challenges in designing game-theoretic mechanisms for dynamic channel redistribution. Since designing a completely secure mechanism is extremely expensive or impossible in most of distributed autonomous systems, it is more beneficial to study misbehavior of the nodes and develop light-weighted game-theoretic channel allocation mechanisms. With a mix of theoretical and hands-on information, the brief traces the concepts of game theory, the current state of spectrum allocation in wireless networks and future competition for resources. Thorough yet accessible, the content is ideal for researchers and practitioners working on spectrum redistribution. It is also a helpful resource for researchers and advanced-level students interested in game theory and wireless communications.
"Presenting state-of-the-art research into methods of wireless spectrum allocation based on game theory and mechanism design, this innovative and comprehensive book provides a strong foundation for the design of future wireless mechanisms and spectrum markets. Prominent researchers showcase a diverse range of novel insights and approaches to the increasing demand for limited spectrum resources, with a consistent emphasis on theoretical methods, analytical results and practical examples. Covering fundamental underlying principles, licensed spectrum sharing, opportunistic spectrum sharing, and wider technical and economic considerations, this singular book will be of interest to academic and industrial researchers, wireless industry practitioners, and regulators interested in the foundations of cutting-edge spectrum management"--
An innovative and comprehensive book presenting state-of-the-art research into wireless spectrum allocation based on game theory and mechanism design.
This book offers a thorough examination of potential game theory and its applications in radio resource management for wireless communications systems and networking. The book addresses two major research goals: how to identify a given game as a potential game, and how to design the utility functions and the potential functions with certain special properties in order to formulate a potential game. After proposing a unifying mathematical framework for the identification of potential games, the text surveys existing applications of this technique within wireless communications and networking problems found in OFDMA 3G/4G/WiFi networks, as well as next-generation systems such as cognitive radios and dynamic spectrum access networks. Professionals interested in understanding the theoretical aspect of this specialized field will find Potential Game Theory a valuable resource, as will advanced-level engineering students. It paves the way for extensive and rigorous research exploration on a topic whose capacity for practical applications is vast but not yet fully exploited.
The use of game theoretic techniques is playing an increasingly important role in the network design domain. Understanding the background, concepts, and principles in using game theory approaches is necessary for engineers in network design. Game Theory Applications in Network Design provides the basic idea of game theory and the fundamental understanding of game theoretic interactions among network entities. The material in this book also covers recent advances and open issues, offering game theoretic solutions for specific network design issues. This publication will benefit students, educators, research strategists, scientists, researchers, and engineers in the field of network design.
An innovative and comprehensive book presenting state-of-the-art research into wireless spectrum allocation based on game theory and mechanism design.
Giving a basic overview of the technologies supporting cognitive radio this introductory-level text follows a logical approach, starting with the physical layer and concluding with applications and general issues. It provides a background to advances in the field of cognitive radios and a new exploration of how these radios can work together as a network. Cognitive Radio Networks starts with an introduction to the fundamentals of wireless communications, introducing technologies such as OFDM & MIMO. It moves onto cover software defined radio and explores and contrasts wireless, cooperative and cognitive networks and communications. Spectrum sensing, medium access control and network layer design are examined before the book concludes by covering the topics of trusted cognitive radio networks and spectrum management. Unique in providing a brief but clear tutorial and reference to cognitive radio networks this book is a single reference, written at the appropriate level for newcomers as well as providing an encompassing text for those with more knowledge of the subject. One of the first books to provide a systematic description of cognitive radio networks Provides pervasive background knowledge including both wireless communications and wireless networks Written by leading experts in the field Full network stack investigation
This unified 2001 treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. The key results and tools of game theory are covered, as are various real-world technologies and a wide range of techniques for modeling, design and analysis.
Used to explain complicated economic behavior for decades, game theory is quickly becoming a tool of choice for those serious about optimizing next generation wireless systems. Illustrating how game theory can effectively address a wide range of issues that until now remained unresolved, Game Theory for Wireless Communications and Networking provides a systematic introduction to the application of this powerful and dynamic tool. This comprehensive technical guide explains game theory basics, architectures, protocols, security, models, open research issues, and cutting-edge advances and applications. It describes how to employ game theory in infrastructure-based wireless networks and multihop networks to reduce power consumption—while improving system capacity, decreasing packet loss, and enhancing network resilience. Providing for complete cross-referencing, the text is organized into four parts: Fundamentals—introduces the fundamental issues and solutions in applying different games in different wireless domains, including wireless sensor networks, vehicular networks, and OFDM-based wireless systems Power Control Games—considers issues and solutions in power control games Economic Approaches—reviews applications of different economic approaches, including bargaining and auction-based approaches Resource Management—explores how to use the game theoretic approach to address radio resource management issues The book explains how to apply the game theoretic model to address specific issues, including resource allocation, congestion control, attacks, routing, energy management, packet forwarding, and MAC. Facilitating quick and easy reference to related optimization and algorithm methodologies, it supplies you with the background and tools required to use game theory to drive the improvement and development of next generation wireless systems.