Download Free Spectrum And Power Allocation In Cognitive Radio Systems Book in PDF and EPUB Free Download. You can read online Spectrum And Power Allocation In Cognitive Radio Systems and write the review.

As wireless services rapidly expand, the inefficient use of limited spectrum resources poses a critical challenge. The conventional approach to spectrum allocation, based on fixed assignments, could be more effective in meeting the escalating demand for wireless devices and systems. Cognitive radio technology offers a transformative solution by reimagining the spectrum as a multidimensional space, enabling opportunistic access to underutilized bands. However, the field of cognitive radio is still in its early stages, needing more in-depth analyses and descriptions of crucial processes. Spectrum and Power Allocation in Cognitive Radio Systems addresses this pressing need by offering a comprehensive guide for academic scholars, researchers, and industry professionals. This book delves into cognitive radio technology's foundations, organization, and challenges, providing insights into dynamic spectrum access, networking protocols, hardware architecture, and emerging applications. It presents advanced topics such as spectrum sensing algorithms, cooperative spectrum sensing, and multi-user access, offering practical solutions to enhance spectrum efficiency.
Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.
This book discusses the use of the spectrum sharing techniques in cognitive radio technology, in order to address the problem of spectrum scarcity for future wireless communications. The authors describe a cognitive radio medium access control (MAC) protocol, with which throughput maximization has been achieved. The discussion also includes use of this MAC protocol for imperfect sensing scenarios and its effect on the performance of cognitive radio systems. The authors also discuss how energy efficiency has been maximized in this system, by applying a simple algorithm for optimizing the transmit power of the cognitive user. The study about the channel fading in the cognitive user and licensed user and power adaption policy in this scenario under peak transmit power and interference power constraint is also present in this book.
As wireless services rapidly expand, the inefficient use of limited spectrum resources poses a critical challenge. The conventional approach to spectrum allocation, based on fixed assignments, could be more effective in meeting the escalating demand for wireless devices and systems. Cognitive radio technology offers a transformative solution by reimagining the spectrum as a multidimensional space, enabling opportunistic access to underutilized bands. However, the field of cognitive radio is still in its early stages, needing more in-depth analyses and descriptions of crucial processes. Spectrum and Power Allocation in Cognitive Radio Systems addresses this pressing need by offering a comprehensive guide for academic scholars, researchers, and industry professionals. This book delves into cognitive radio technology's foundations, organization, and challenges, providing insights into dynamic spectrum access, networking protocols, hardware architecture, and emerging applications. It presents advanced topics such as spectrum sensing algorithms, cooperative spectrum sensing, and multi-user access, offering practical solutions to enhance spectrum efficiency.
This book discusses the use of the spectrum sharing techniques in cognitive radio technology, in order to address the problem of spectrum scarcity for future wireless communications. The authors describe a cognitive radio medium access control (MAC) protocol, with which throughput maximization has been achieved. The discussion also includes use of this MAC protocol for imperfect sensing scenarios and its effect on the performance of cognitive radio systems. The authors also discuss how energy efficiency has been maximized in this system, by applying a simple algorithm for optimizing the transmit power of the cognitive user. The study about the channel fading in the cognitive user and licensed user and power adaption policy in this scenario under peak transmit power and interference power constraint is also present in this book.
Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems.
An all-inclusive introduction to this revolutionary technology, presenting the key research issues and state-of-the-art design, analysis, and optimization techniques.
Radio interference is a problem that has plagued air communication since its inception. Advances in cognitive radio science help to mitigate these concerns. Cognitive Radio Technology Applications for Wireless and Mobile Ad Hoc Networks provides an in-depth exploration of cognitive radio and its applications in mobile and/or wireless network settings. The book combines a discussion of existing literature with current and future research to create an integrated approach that is useful both as a textbook for students of computer science and as a reference book for researchers and practitioners engaged in solving the complex problems and future challenges of cognitive radio technologies.
Cognitive Radio Communications and Networks gives comprehensive and balanced coverage of the principles of cognitive radio communications, cognitive networks, and details of their implementation, including the latest developments in the standards and spectrum policy. Case studies, end-of-chapter questions, and descriptions of various platforms and test beds, together with sample code, give hands-on knowledge of how cognitive radio systems can be implemented in practice. Extensive treatment is given to several standards, including IEEE 802.22 for TV White Spaces and IEEE SCC41 Written by leading people in the field, both at universities and major industrial research laboratories, this tutorial text gives communications engineers, R&D engineers, researchers, undergraduate and post graduate students a complete reference on the application of wireless communications and network theory for the design and implementation of cognitive radio systems and networks - Each chapter is written by internationally renowned experts, giving complete and balanced treatment of the fundamentals of both cognitive radio communications and cognitive networks, together with implementation details - Extensive treatment of the latest standards and spectrum policy developments enables the development of compliant cognitive systems - Strong practical orientation – through case studies and descriptions of cognitive radio platforms and testbeds – shows how real world cognitive radio systems and network architectures have been built Alexander M. Wyglinski is an Assistant Professor of Electrical and Computer Engineering at Worcester Polytechnic Institute (WPI), Director of the WPI Limerick Project Center, and Director of the Wireless Innovation Laboratory (WI Lab) - Each chapter is written by internationally renowned experts, giving complete and balanced treatment of the fundamentals of both cognitive radio communications and cognitive networks, together with implementation details - Extensive treatment of the latest standards and spectrum policy developments enables the development of compliant cognitive systems - Strong practical orientation – through case studies and descriptions of cognitive radio platforms and testbeds – shows how "real world" cognitive radio systems and network architectures have been built
Broadcast spectrum is scarce, both in terms of our ability to access existing spectrum and as a result of access rules created by governments. An emerging paradigm called cognitive radio, however, has the potential to allow different systems to dynamically access and opportunistically exploit the same frequency band in an efficient way, thereby allowing broadcasters to use spectrum more efficiently. Cognitive Radio and Interference Management: Technology and Strategy brings together state-of-the-art research results on cognitive radio and interference management from both theoretical and practical perspectives. It serves as a bridge between people who are working to develop theoretical and practical research in cognitive radio and interference management, and therefore facilitate the future development of cognitive radio and its applications.