Download Free Spectral Imaging Book in PDF and EPUB Free Download. You can read online Spectral Imaging and write the review.

A practical and self-contained guide to the principles, techniques, models and tools of imaging spectroscopy. Bringing together material from essential physics and digital signal processing, it covers key topics such as sensor design and calibration, atmospheric inversion and model techniques, and processing and exploitation algorithms. Readers will learn how to apply the main algorithms to practical problems, how to choose the best algorithm for a particular application, and how to process and interpret hyperspectral imaging data. A wealth of additional materials accompany the book online, including example projects and data for students, and problem solutions and viewgraphs for instructors. This is an essential text for senior undergraduate and graduate students looking to learn the fundamentals of imaging spectroscopy, and an invaluable reference for scientists and engineers working in the field.
Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. - Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed - Covers state-of-the-art applications in different scientific fields - Discusses the implementation of hyperspectral devices in different environments
This book, edited by leading experts in radiology, offers a state-of-the-art overview of the specifics and the added value of dual-energy, multi-energy, and spectral computed tomography (CT). Latest advances and upcoming innovations such as photon-counting detector CT are covered by renown experts in the field. The entire spectrum of clinical applications of dual-energy and spectral CT throughout the body is covered. Book chapters are written by expert authors with a background in physics and radiology and are richly illustrated with high quality figures, graphical illustrations, and tables. The first section covers background issues and the most relevant technical aspects of the technique, including a detailed description of the approaches to dual-energy, spectral and photon-counting CT by different vendors of CT scanners. The second part focusses on the use of dual-energy, spectral and photon-counting CT in daily clinical practice, and individual chapters are devoted to imaging of the brain, cardiovascular system, gastrointestinal tract, abdominal organs, skeletal system, and the chest. The focus of the book ensures that it will be of interest for a multidisciplinary forum of readers comprising radiologists, medical physicists, and other medical professionals and scientists being interested in cutting-edge CT imaging.
An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statistical models of optical fields The basic function of modern optical detectors and focal plane arrays Practical strategies for coherence measurement in imaging system design The sampling theory of digital imaging and spectroscopy for both conventional and emerging compressive and generalized measurement strategies Measurement code design Linear and nonlinear signal estimation The book concludes with a review of numerous design strategies in spectroscopy and imaging and clearly outlines the benefits and limits of each approach, including coded aperture and imaging spectroscopy, resonant and filter-based systems, and integrated design strategies to improve image resolution, depth of field, and field of view. Optical Imaging and Spectroscopy is an indispensable textbook for advanced undergraduate and graduate courses in optical sensor design. In addition to its direct applicability to optical system design, unique perspectives on computational sensor design presented in the text will be of interest for sensor designers in radio and millimeter wave, X-ray, and acoustic systems.
Hyperspectral Imaging: Techniques for Spectral Detection and Classification is an outgrowth of the research conducted over the years in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. It explores applications of statistical signal processing to hyperspectral imaging and further develops non-literal (spectral) techniques for subpixel detection and mixed pixel classification. This text is the first of its kind on the topic and can be considered a recipe book offering various techniques for hyperspectral data exploitation. In particular, some known techniques, such as OSP (Orthogonal Subspace Projection) and CEM (Constrained Energy Minimization) that were previously developed in the RSSIPL, are discussed in great detail. This book is self-contained and can serve as a valuable and useful reference for researchers in academia and practitioners in government and industry.
Optical instruments are routinely employed to obtain a wealth of information about the atmosphere, including its composition, temperature, and winds. A bewildering variety of optical instruments have been proposed over the years, making it difficult to decide which instrument should be chosen to make a specific measurement. Spectral Imaging of the Atmosphere traces the historical development of both spectral and imaging methods and places them in a unified framework relevant to observations of the troposphere, stratosphere, mesosphere and thermosphere. The underlying concepts of various measurement methodologies are presented and paired with appropriate applications. A selection of specific spectral imaging instruments, appropriate to illustrate each conceptual type, is described in detail.Shepherd's work provides both scientists and engineers with an in-depth understanding of the fundamental concepts they need to know in order to plan a program of atmospheric measurements. Expected future methods and developments are also presented. Problems designed to test and enhance the reader's understanding of the material are included in each chapter.Provides a unique and unifed approach to the methodology of optical atmospheric observations from the troposphere through the thermosphere, which allows the practitioner to choose the best instrument for a given measurement.Describes state-of-the-art atmospheric observing instruments with an eye to future developments.Includes problems designed to test and enhance students' unerstanding of the material presented in each chapter.Contains concise descriptions of selected current and planned spectral imagers, including the Fabry-Perot spectrometer, the Michelson interferometer and the diffraction grating spectrometer.Written from a scientific perspective in an engineering framework, this work is accessible to atmospheric scientists and instrumentation engineers alike.
Based on the integration of computer vision and spectrscopy techniques, hyperspectral imaging is a novel technology for obtaining both spatial and spectral information on a product. Used for nearly 20 years in the aerospace and military industries, more recently hyperspectral imaging has emerged and matured into one of the most powerful and rapidly growing methods of non-destructive food quality analysis and control. Hyperspectral Imaging for Food Quality Analysis and Control provides the core information about how this proven science can be practically applied for food quality assessment, including information on the equipment available and selection of the most appropriate of those instruments. Additionally, real-world food-industry-based examples are included, giving the reader important insights into the actual application of the science in evaluating food products. - Presentation of principles and instruments provides core understanding of how this science performs, as well as guideline on selecting the most appropriate equipment for implementation - Includes real-world, practical application to demonstrate the viability and challenges of working with this technology - Provides necessary information for making correct determination on use of hyperspectral imaging
A comparison of the strengths and weaknesses of near-infrared, infrared and Raman imaging, focusing on current as well as conceivable applications for chemical analysis in delicate natural and synthetic samples. This handbook and ready reference covers instrumentation for vibrational spectroscopic imaging, chemometric evaluation of spectroscopic images, and vibrational spectroscopic imaging in biology and medicine, as well as the chemical, pharmaceutical and food industries.
Hyperspectral imaging or imaging spectroscopy is a novel technology for acquiring and analysing an image of a real scene by computers and other devices in order to obtain quantitative information for quality evaluation and process control. Image processing and analysis is the core technique in computer vision. With the continuous development in hardware and software for image processing and analysis, the application of hyperspectral imaging has been extended to the safety and quality evaluation of meat and produce. Especially in recent years, hyperspectral imaging has attracted much research and development attention, as a result rapid scientific and technological advances have increasingly taken place in food and agriculture, especially on safety and quality inspection, classification and evaluation of a wide range of food products, illustrating the great advantages of using the technology for objective, rapid, non-destructive and automated safety inspection as well as quality control. Therefore, as the first reference book in the area, Hyperspectral Imaging Technology in Food and Agriculture focuses on these recent advances. The book is divided into three parts, which begins with an outline of the fundamentals of the technology, followed by full covering of the application in the most researched areas of meats, fruits, vegetables, grains and other foods, which mostly covers food safety and quality as well as remote sensing applicable for crop production. Hyperspectral Imaging Technology in Food and Agriculture is written by international peers who have both academic and professional credentials, with each chapter addressing in detail one aspect of the relevant technology, thus highlighting the truly international nature of the work. Therefore the book should provide the engineer and technologist working in research, development, and operations in the food and agricultural industry with critical, comprehensive and readily accessible information on the art and science of hyperspectral imaging technology. It should also serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions.
This book introduces orthogonal polarized spectral (OPS) imaging, a new technique for examining the microcirculation in both animals and humans during surgery and in other clinical setups. OPS imaging creates an image by using the sub-surface scattering of polarized light to create a 'virtual' light source within the tissue being observed. Thus, the microcirculation can be visualized without the use of fluorescent dyes or transillumination, making it possible to observe the human microcirculation in real time. The technology has been incorporated into a small, hand-held device called a CYTOSCANTM video microscope, which can be used in both research and clinical settings. Several validation studies comparing OPS imaging against standard intravital fluorescence microscopy in animal models demonstrate that it is possible to make quantitative measurements of relevant parameters (vessel diameter, red blood cell velocity and functional capillary density) from these images. Further studies show the feasibility of making such measurements in various human organs such as the skin, intestine, and brain. In addition, this book presents several clinical applications including use in cardiopulmonary bypass, neurosurgery, intensive care, general surgery and plastic surgery. The book should be read by anyone concerned with microvascular perfusion. This includes not only those involved in microcirculation research but clinicians interested in nutritive perfusion. The technique described here will be of aid to a variety of surgical specialists from cardiac and neurosurgeons to plastic surgeons. It will likewise be of interest to angiologists, anesthesiologists, neonatologists, dermatologists, and general surgeons.