Download Free Spectral Analysis And Its Applications Book in PDF and EPUB Free Download. You can read online Spectral Analysis And Its Applications and write the review.

This book is an up-to-date introduction to univariate spectral analysis at the graduate level, which reflects a new scientific awareness of spectral complexity, as well as the widespread use of spectral analysis on digital computers with considerable computational power. The text provides theoretical and computational guidance on the available techniques, emphasizing those that work in practice. Spectral analysis finds extensive application in the analysis of data arising in many of the physical sciences, ranging from electrical engineering and physics to geophysics and oceanography. A valuable feature of the text is that many examples are given showing the application of spectral analysis to real data sets. Special emphasis is placed on the multitaper technique, because of its practical success in handling spectra with intricate structure, and its power to handle data with or without spectral lines. The text contains a large number of exercises, together with an extensive bibliography.
The Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.
This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.
Introduces the basic tools in spectral analysis using numerous examples from the Schrödinger operator theory and various branches of physics.
This state-of-the-art survey serves as a complete overview of the subject. Besides the principles and theoretical foundations, emphasis is laid on practical applicability -- describing not only classical methods, but also modern developments and their applications. Students, researchers and practitioners, especially in the fields of data registration, treatment and evaluation, will find this a wealth of information.
This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
This text provides a thorough explanation of the underlying principles of spectral analysis and the full range of estimation techniques used in engineering. The applications of these techniques are demonstrated in numerous case studies, illustrating the approach required and the compromises to be made when solving real engineering problems. The principles outlined in these case studies are applicable over the full range of engineering disciplines and all the reader requires is an understanding of elementary calculus and basic statistics. The realistic approach and comprehensive nature of this text will provide undergraduate engineers and physicists of all disciplines with an invaluable introduction to the subject and the detailed case studies will interest the experienced professional. - No more than a knowledge of elementary calculus, and basic statistics and probability is needed - Accessible to undergraduates at any stage of their courses - Easy and clear to follow
Digital Spectral Analysis offers a broad perspective of spectral estimation techniques and their implementation. Coverage includes spectral estimation of discrete-time or discrete-space sequences derived by sampling continuous-time or continuous-space signals. The treatment emphasizes the behavior of each spectral estimator for short data records and provides over 40 techniques described and available as implemented MATLAB functions. In addition to summarizing classical spectral estimation, this text provides theoretical background and review material in linear systems, Fourier transforms, matrix algebra, random processes, and statistics. Topics include Prony's method, parametric methods, the minimum variance method, eigenanalysis-based estimators, multichannel methods, and two-dimensional methods. Suitable for advanced undergraduates and graduate students of electrical engineering — and for scientific use in the signal processing application community outside of universities — the treatment's prerequisites include some knowledge of discrete-time linear system and transform theory, introductory probability and statistics, and linear algebra. 1987 edition.
Introduction and background; Probability functions and amplitude measures; Correlation and spectral density functions; Single input/single output relationships; System identification and response; Propagation path identification; Single input/multiple output problems; Multiple input/output relationships; Energy source identification; Procedures for solving multiple input/output problems; Statistical errors in measurements.