Download Free Special Issue Theoretical Modeling And Simulation Of Nanostructures Book in PDF and EPUB Free Download. You can read online Special Issue Theoretical Modeling And Simulation Of Nanostructures and write the review.

Provides the theoretical background needed by physicists, engineers and students to simulate nano-devices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab initio methods, and their application to experiments. The topics include quantum confinement, dielectric and optical properties, non-radiative processes, defects and impurities, and quantum transport. This guidebook not only provides newcomers with an accessible overview (requiring only basic knowledge of quantum mechanics and solid-state physics) but also provides active researchers with practical simulation tools.
This book summarizes the state of the art in the theoretical modeling of inorganic nanostructures. Extending the first edition, published in 2015, it presents applications to new nanostructured materials and theoretical explanations of recently discovered optical and thermodynamic properties of known nanomaterials. It discusses the developments in theoretical modeling of nanostructures, describing fundamental approaches such as symmetry analysis and applied calculation methods. The book also examines the theoretical aspects of many thermodynamic and the optical properties of nanostructures. The new edition includes additional descriptions of the theoretical modeling of nanostructures in novel materials such as the V2O5 binary oxide, ZnS, CdS, MoSSe and SnS2.
This volume is a researcher's reference handbook to the many aspects of nanometer structures. Although intended as a source for the serious researcher, novices will find a great deal of interesting content. The theories covered include nanostructured thin films, photonic bandgap structures, quantum dots, carbon nanotubes, atomistic techniques, nanomechanics, nanofluidics, and quantum information processing. Modeling and simulation research on these topics have now reached a stage of maturity.
Despite some 20 years of research history, nanotechnology is still widely regarded as being at an embryonic stage of development. This text provides guidance on the state of the art to the growing numbers of nanotechnology researchers, helping to shape the contours of both experimental research and theoretical research.
Reducing the dimensions of contiguous matter, down to the nanometer scale, confines the electronic and vibrational wavefunctions and results in unique properties which open up a wide vista of potential applications in optics, mechanics, electrical engineering, magnetic devices, catalysis and biomedicine. Nanostructures, characterized by having at least one dimension in the nanometer range, are considered to be a bridge between single molecules and their bulk counterparts. The challenge for nanotechnology is to achieve perfect control of the nanoscale-related properties; which obviously requires correlating the parameters of synthesis with the resultant nanostructures. Nanostructures are also ideal subjects for computer simulation and modeling: in computations related to nanomaterials, one deals with a spatial scaling ranging from a few nanometers to a few micrometers and a time-scaling ranging from a few femto-seconds (fs) to 1 second - with a limit of accuracy better than 1 kcal mol-1. This special-topic volume describes the novel computational and experimental approaches developed in order to resolve questions concerning the growth of nanostructures, their characterization and modeling. Motivated by the increasing need to synthesize and understand the properties of materials at the nanoscale, this issue is very timely and is an important step towards improving the knowledge of how nanomaterials can be made ever more useful to modern technologies.The book, divided into sections on Computational Nanomaterials and Experimental Nanomaterials, comprises a collection of ten original review/papers covering experimental approaches, theoretical analysis and numerical models. Seven papers are devoted to the growth and characterization of nanomaterials, while the other three deal with theoretical approaches to understanding their properties. Another attractive feature of the book is the common aim of these papers of achieving a deeper understanding of the underlying functionality of the properties of nanomaterials.
Modelling and Mechanics of Carbon-based Nanostructured Materials sets out the principles of applied mathematical modeling in the topical area of nanotechnology. It is purposely designed to be self-contained, giving readers all the necessary modeling principles required for working with nanostructures. The unique physical properties observed at the nanoscale are often counterintuitive, sometimes astounding researchers and thus driving numerous investigations into their special properties and potential applications. Typically, existing research has been conducted through experimental studies and molecular dynamics simulations. This book goes beyond that to provide new avenues for study and review. Explores how modeling and mechanical principles are applied to better understand the behavior of carbon nanomaterials Clearly explains important models, such as the Lennard-Jones potential, in a carbon nanomaterials context Includes worked examples and exercises to help readers reinforce what they have read
Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method’s relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. Explores the major modelling techniques used for different classes of nanomaterial Assesses the best modelling technique to use for each different type of nanomaterials Discusses the challenges of using certain modelling techniques with specific nanomaterials