Download Free Special Issue Robust Manufacturing Control Book in PDF and EPUB Free Download. You can read online Special Issue Robust Manufacturing Control and write the review.

A state-of-the-art study of computerized control of chemical processes used in industry, this book is for chemical engineering and industrial chemistry students involved in learning the micro-macro design of chemical process systems.
This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control strategies. Therefore, understanding the cause and effects of multi-scale changes in production networks is of major interest. New methodological approaches from different science disciplines are promising to contribute to a new level comprehension of network processes. Unconventional methods from biology, perturbation ecology or auditory display are gaining increasing importance as they are confronted with similar challenges. Advancements from the classical disciplines such as mathematics, physics and engineering are also becoming of continuing importance.
From the researcher who was one of the first to identify and analyze the infamous industrial control system malware "Stuxnet," comes a book that takes a new, radical approach to making Industrial control systems safe from such cyber attacks: design the controls systems themselves to be "robust." Other security experts advocate risk management, implementing more firewalls and carefully managing passwords and access. Not so this book: those measures, while necessary, can still be circumvented. Instead, this book shows in clear, concise detail how a system that has been set up with an eye toward quality design in the first place is much more likely to remain secure and less vulnerable to hacking, sabotage or malicious control. It blends several well-established concepts and methods from control theory, systems theory, cybernetics and quality engineering to create the ideal protected system. The book's maxim is taken from the famous quality engineer William Edwards Deming, "If I had to reduce my message to management to just a few words, I'd say it all has to do with reducing variation." Highlights include: - An overview of the problem of "cyber fragility" in industrial control systems - How to make an industrial control system "robust," including principal design objectives and overall strategic planning - Why using the methods of quality engineering like the Taguchi method, SOP and UML will help to design more "armored" industrial control systems.
This Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019) has been launched as a joint issue of the journals Applied Sciences and Materials. The 10 contributions published in this Special Issue of Applied Sciences present cutting-edge advances in the field of manufacturing engineering, focusing on production planning, sustainability, metrology, cultural heritage, and materials processing, with experimental and numerical results. It is worth mentioning that the topic “production planning” has attracted a great number of contributions in this journal, due to their applicative approach.
While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.
Model based control has emerged as an important way to improve plant efficiency in the process industries, while meeting processing and operating policy constraints. The reader of Methods of Model Based Process Control will find state of the art reports on model based control technology presented by the world's leading scientists and experts from industry. All the important issues that a model based control system has to address are covered in depth, ranging from dynamic simulation and control-relevant identification to information integration. Specific emerging topics are also covered, such as robust control and nonlinear model predictive control. In addition to critical reviews of recent advances, the reader will find new ideas, industrial applications and views of future needs and challenges. Audience: A reference for graduate-level courses and a comprehensive guide for researchers and industrial control engineers in their exploration of the latest trends in the area.
This reference book can be read at different levels, making it a powerful source of information. It presents most of the aspects of control that can help anyone to have a synthetic view of control theory and possible applications, especially concerning process engineering.
Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.