Download Free Special Issue On New Trends In Computational Intelligence And Applications Book in PDF and EPUB Free Download. You can read online Special Issue On New Trends In Computational Intelligence And Applications and write the review.

The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques
The increase in computing power and sensor data has driven Information Technology on end devices, such as smart phones or automobiles. The widespread application of IT across the globe includes manufacturing, engineering, retail, e-commerce, health care, education, financial services, banking, space exploration, politics (to help predict the sentiments of voter demographics), etc. The papers in this conference proceeding examine and discuss various interdisciplinary researches that could accelerate the advent of Information Technology.
This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
This book offers an excellent presentation of intelligent engineering and informatics foundations for researchers in this field as well as many examples with industrial application. It contains extended versions of selected papers presented at the inaugural ACASE 2012 Conference dedicated to the Applications of Systems Engineering. This conference was held from the 6th to the 8th of February 2012, at the University of Technology, Sydney, Australia, organized by the University of Technology, Sydney (Australia), Wroclaw University of Technology (Poland) and the University of Applied Sciences in Hagenberg (Austria). The book is organized into three main parts. Part I contains papers devoted to the heuristic approaches that are applicable in situations where the problem cannot be solved by exact methods, due to various characteristics or dimensionality problems. Part II covers essential issues of the network management, presents intelligent models of the next generation of networks and distributed systems as well as discusses applications of modern numerical methods in large intractable systems. Part III covers salient issues of complexity in intelligent system applications. This part also contains papers and articles which discuss concurrency issues that arise when multiple systems attempt to use the same radio space and the inter-connected system applications in the field of medical simulation and training.
In recent years, biometrics has developed rapidly with its worldwide applications for daily life. New trends and novel developments have been proposed to acquire and process many different biometric traits. The ignored challenges in the past and potential problems need to be thought together and deeply integrated. The key objective of the book is to keep up with the new technologies on some recent theoretical development as well as new trends of applications in biometrics. The topics covered in this book reflect well both aspects of development. They include the new development in forensic speaker recognition, 3D and thermo face recognition, finger vein recognition, contact-less biometric system, hand geometry recognition, biometric performance evaluation, multi-biometric template protection, and novel subfields in the new challenge fields. The book consists of 13 chapters. It is divided into four sections, namely, theory and method, performance evaluation, security and template protection, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Shanjuan Xie. We deeply appreciate the efforts of our guest editors: Dr. Norman Poh, Dr. Loris Nanni, Dr. Dongsun Park, Dr. Sook Yoon and Ms. Congcong Xiong, as well as a number of anonymous reviewers.
Disruptive Trends in Computer Aided Diagnosis collates novel techniques and methodologies in the domain of content based image classification and deep learning/machine learning techniques to design efficient computer aided diagnosis architecture. It is aimed to highlight new challenges and probable solutions in the domain of computer aided diagnosis to leverage balancing of sustainable ecology. The volume focuses on designing efficient algorithms for proposing CAD systems to mitigate the challenges of critical illnesses at an early stage. State-of-the-art novel methods are explored for envisaging automated diagnosis systems thereby overriding the limitations due to lack of training data, sample annotation, region of interest identification, proper segmentation and so on. The assorted techniques addresses the challenges encountered in existing systems thereby facilitating accurate patient healthcare and diagnosis. Features: An integrated interdisciplinary approach to address complex computer aided diagnosis problems and limitations. Elucidates a rich summary of the state-of-the-art tools and techniques related to automated detection and diagnosis of life threatening diseases including pandemics. Machine learning and deep learning methodologies on evolving accurate and precise early detection and medical diagnosis systems. Information presented in an accessible way for students, researchers and medical practitioners. The volume would come to the benefit of both post-graduate students and aspiring researchers in the field of medical informatics, computer science and electronics and communication engineering. In addition, the volume is also intended to serve as a guiding factor for the medical practitioners and radiologists in accurate diagnosis of diseases.
The book presents high quality research papers presented at International Conference on Computational Intelligence (ICCI 2021) held online during 27–28 December, 2021. The topics covered are artificial intelligence, neural network, deep learning techniques, fuzzy theory and systems, rough sets, self-organizing maps, machine learning, chaotic systems, multi-agent systems, computational optimization ensemble classifiers, reinforcement learning, decision trees, support vector machines, hybrid learning, statistical learning. metaheuristics algorithms: evolutionary and swarm-based algorithms like genetic algorithms, genetic programming, differential evolution, particle swarm optimization, whale optimization, spider monkey optimization, firefly algorithm, memetic algorithms. And also machine vision, Internet of Things, image processing, image segmentation, data clustering, sentiment analysis, big data, computer networks, signal processing, supply chain management, web and text mining, distributed systems, bioinformatics, embedded systems, expert system, forecasting, pattern recognition, planning and scheduling, time series analysis, human-computer interaction, web mining, natural language processing, multimedia systems, and quantum computing.
This book constitutes the refereed proceedings of the 20th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2007, held in Kyoto, Japan. Coverage includes text processing, fuzzy system applications, real-world interaction, data mining, machine learning chance discovery and social networks, e-commerce, heuristic search application systems, and other applications.
Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering merges computer engineering and environmental engineering. The book presents the latest finding on how data science and AI-based tools are being applied in environmental engineering research. This application involves multiple domains such as data science and artificial intelligence to transform the data collected by intelligent sensors into relevant and reliable information to support decision-making. These tools include fuzzy logic, knowledge-based systems, particle swarm optimization, genetic algorithms, Monte Carlo simulation, artificial neural networks, support vector machine, boosted regression tree, simulated annealing, ant colony algorithm, decision tree, immune algorithm, and imperialist competitive algorithm. This book is a fundamental information source because it is the first book to present the foundational reference material in this new research field. Furthermore, it gives a critical overview of the latest cross-domain research findings and technological developments on the recent advances in computer-aided intelligent environmental data engineering. Captures the application of data science and artificial intelligence for a broader spectrum of environmental engineering problems Presents methods and procedures as well as case studies where state-of-the-art technologies are applied in actual environmental scenarios Offers a compilation of essential and critical reviews on the application of data science and artificial intelligence to the entire spectrum of environmental engineering
Intelligent information and database systems are two closely related subfields of modern computer science which have been known for over thirty years. They focus on the integration of artificial intelligence and classic database technologies to create the class of next generation information systems. The book focuses on new trends in intelligent information and database systems and discusses topics addressed to the foundations and principles of data, information, and knowledge models, methodologies for intelligent information and database systems analysis, design, and implementation, their validation, maintenance and evolution. They cover a broad spectrum of research topics discussed both from the practical and theoretical points of view such as: intelligent information retrieval, natural language processing, semantic web, social networks, machine learning, knowledge discovery, data mining, uncertainty management and reasoning under uncertainty, intelligent optimization techniques in information systems, security in databases systems, and multimedia data analysis. Intelligent information systems and their applications in business, medicine and industry, database systems applications, and intelligent internet systems are also presented and discussed in the book. The book consists of 38 chapters based on original works presented during the 7th Asian Conference on Intelligent Information and Database Systems (ACIIDS 2015) held on 23–25 March 2015 in Bali, Indonesia. The book is divided into six parts related to Advanced Machine Learning and Data Mining, Intelligent Computational Methods in Information Systems, Semantic Web, Social Networks and Recommendation Systems, Cloud Computing and Intelligent Internet Systems, Knowledge and Language Processing, and Intelligent Information and Database Systems: Applications.