Download Free Special Issue On Neural Computing On Massively Parallel Processing Book in PDF and EPUB Free Download. You can read online Special Issue On Neural Computing On Massively Parallel Processing and write the review.

Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discusses parallel processing for semantic networks, which are widely used means for representing knowledge - methods which enable efficient and flexible processing of semantic networks are expected to have high utility for building large-scale knowledge-based systems. The third section explores the automatic parallel execution of production systems, which are used extensively in building rule-based expert systems - systems containing large numbers of rules are slow to execute and can significantly benefit from automatic parallel execution. The exploitation of parallelism for the mechanization of logic is dealt with in the fourth section. While sequential control aspects pose problems for the parallelization of production systems, logic has a purely declarative interpretation which does not demand a particular evaluation strategy. In this area, therefore, very large search spaces provide significant potential for parallelism. In particular, this is true for automated theorem proving. The fifth section considers the problem of constraint satisfaction, which is a useful abstraction of a number of important problems in AI and other fields of computer science. It also discusses the technique of consistent labeling as a preprocessing step in the constraint satisfaction problem. Section VI consists of two articles, each on a different, important topic. The first discusses parallel formulation for the Tree Adjoining Grammar (TAG), which is a powerful formalism for describing natural languages. The second examines the suitability of a parallel programming paradigm called Linda, for solving problems in artificial intelligence.Each of the areas discussed in the book holds many open problems, but it is believed that parallel processing will form a key ingredient in achieving at least partial solutions. It is hoped that the contributions, sourced from experts around the world, will inspire readers to take on these challenging areas of inquiry.
Neural computation arises from the capacity of nervous tissue to process information and accumulate knowledge in an intelligent manner. Conventional computational machines have encountered enormous difficulties in duplicatingsuch functionalities. This has given rise to the development of Artificial Neural Networks where computation is distributed over a great number of local processing elements with a high degree of connectivityand in which external programming is replaced with supervised and unsupervised learning. The papers presented in this volume are carefully reviewed versions of the talks delivered at the International Workshop on Artificial Neural Networks (IWANN '93) organized by the Universities of Catalonia and the Spanish Open University at Madrid and held at Barcelona, Spain, in June 1993. The 111 papers are organized in seven sections: biological perspectives, mathematical models, learning, self-organizing networks, neural software, hardware implementation, and applications (in five subsections: signal processing and pattern recognition, communications, artificial vision, control and robotics, and other applications).
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.
Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.
After more than two decades of research activity, speech recognition has begun to live up to its promise as a practical technology and interest in the field is growing dramatically. Readings in Speech Recognition provides a collection of seminal papers that have influenced or redirected the field and that illustrate the central insights that have emerged over the years. The editors provide an introduction to the field, its concerns and research problems. Subsequent chapters are devoted to the main schools of thought and design philosophies that have motivated different approaches to speech recognition system design. Each chapter includes an introduction to the papers that highlights the major insights or needs that have motivated an approach to a problem and describes the commonalities and differences of that approach to others in the book.
Connection science is a new information-processing paradigm which attempts to imitate the architecture and process of the brain, and brings together researchers from disciplines as diverse as computer science, physics, psychology, philosophy, linguistics, biology, engineering, neuroscience and AI. Work in Connectionist Natural Language Processing (CNLP) is now expanding rapidly, yet much of the work is still only available in journals, some of them quite obscure. To make this research more accessible this book brings together an important and comprehensive set of articles from the journal CONNECTION SCIENCE which represent the state of the art in Connectionist natural language processing; from speech recognition to discourse comprehension. While it is quintessentially Connectionist, it also deals with hybrid systems, and will be of interest to both theoreticians as well as computer modellers. Range of topics covered: Connectionism and Cognitive Linguistics Motion, Chomsky's Government-binding Theory Syntactic Transformations on Distributed Representations Syntactic Neural Networks A Hybrid Symbolic/Connectionist Model for Understanding of Nouns Connectionism and Determinism in a Syntactic Parser Context Free Grammar Recognition Script Recognition with Hierarchical Feature Maps Attention Mechanisms in Language Script-Based Story Processing A Connectionist Account of Similarity in Vowel Harmony Learning Distributed Representations Connectionist Language Users Representation and Recognition of Temporal Patterns A Hybrid Model of Script Generation Networks that Learn about Phonological Features Pronunciation in Text-to-Speech Systems
Both pattern recognition and computer vision have experienced rapid progress in the last twenty-five years. This book provides the latest advances on pattern recognition and computer vision along with their many applications. It features articles written by renowned leaders in the field while topics are presented in readable form to a wide range of readers. The book is divided into five parts: basic methods in pattern recognition, basic methods in computer vision and image processing, recognition applications, life science and human identification, and systems and technology. There are eight new chapters on the latest developments in life sciences using pattern recognition as well as two new chapters on pattern recognition in remote sensing.
Centered around 20 major topic areas of both theoretical and practical importance, the World Congress on Neural Networks provides its registrants -- from a diverse background encompassing industry, academia, and government -- with the latest research and applications in the neural network field.
This book contains a selection of papers presented at the "European Robotics and Intelligent Systems Conference" (EURISCON '91) held in Corfu. Greece (June 23-28. 1991). It is devoted to the analysis. design and applications of technological systems with built-in intelligence achieved through appropriate blending of mathematical, symbolic. sensing. computer processing. and feedback control concepts. methods and software / hardware tools. System intelligence includes human-like capabilities such as learning. observation. perception. interpretation. reasoning. planning. decision making. and action. Integrated intelligent decision and control systems obey Saridis' prinCiple of Increasing Precision with Decreasing Intelligence (IPDI). and have a hierarchical structure with three basic levels. namely Organization. Coordination. and Execution Levels. As we proceed from the organization to the execution level. the precision about the jobs to be completed increases and accordingly the intelligence reqUired for these jobs decreases. As an example. it is mentioned here that in an intelligent robotic system the organization tasks can be realized using a neural net. the coordination tasks by a Petri net. and the execution tasks by local sensors and actuators. The field of intelligent systems is a new interdisciplinary field with continuously increasing interest and expansion. It is actually the outcome of the synergetic interaction and cooperation of classical fields such as system theory. control theory. artificial intelligence. operational research. information theory. electronics. communications. and others.