Download Free Special Issue On Icecs 2001 Book in PDF and EPUB Free Download. You can read online Special Issue On Icecs 2001 and write the review.

Electromagnetic Compatibility of Integrated Circuits: Techniques for Low Emission and Susceptibility focuses on the electromagnetic compatibility of integrated circuits. The basic concepts, theory, and an extensive historical review of integrated circuit emission and susceptibility are provided. Standardized measurement methods are detailed through various case studies. EMC models for the core, I/Os, supply network, and packaging are described with applications to conducted switching noise, signal integrity, near-field and radiated noise. Case studies from different companies and research laboratories are presented with in-depth descriptions of the ICs, test set-ups, and comparisons between measurements and simulations. Specific guidelines for achieving low emission and susceptibility derived from the experience of EMC experts are presented.
This unique book provides an overview of the current state of the art and very recent research results that have been achieved as part of the Low-Power Initiative of the European Union, in the field of analogue, RF and mixed-signal design methodologies and CAD tools.
This book constitutes the refereed proceedings of the Third International Conference on Computer Vision Systems, ICVS 2003, held in Graz, Austria, in April 2003. The 51 revised full papers presented were carefully reviewed and selected from 109 submissions. The papers are organized in topical sections on cognitive vision, philosophical issues in cognitive vision, cognitive vision and applications, computer vision architectures, performance evaluation, implementation methods, architecture and classical computer vision, and video annotation.
Coverage in this proceedings volume includes DNA and string processing applications, reconfigurable computing hardware and systems, image processing, run-time behavior, instruction set extension, as well as random number generation and financial computation.
This book offers the first comprehensive view on integrated circuit and system design for the Internet of Things (IoT), and in particular for the tiny nodes at its edge. The authors provide a fresh perspective on how the IoT will evolve based on recent and foreseeable trends in the semiconductor industry, highlighting the key challenges, as well as the opportunities for circuit and system innovation to address them. This book describes what the IoT really means from the design point of view, and how the constraints imposed by applications translate into integrated circuit requirements and design guidelines. Chapter contributions equally come from industry and academia. After providing a system perspective on IoT nodes, this book focuses on state-of-the-art design techniques for IoT applications, encompassing the fundamental sub-systems encountered in Systems on Chip for IoT: ultra-low power digital architectures and circuits low- and zero-leakage memories (including emerging technologies) circuits for hardware security and authentication System on Chip design methodologies on-chip power management and energy harvesting ultra-low power analog interfaces and analog-digital conversion short-range radios miniaturized battery technologies packaging and assembly of IoT integrated systems (on silicon and non-silicon substrates). As a common thread, all chapters conclude with a prospective view on the foreseeable evolution of the related technologies for IoT. The concepts developed throughout the book are exemplified by two IoT node system demonstrations from industry. The unique balance between breadth and depth of this book: enables expert readers quickly to develop an understanding of the specific challenges and state-of-the-art solutions for IoT, as well as their evolution in the foreseeable future provides non-experts with a comprehensive introduction to integrated circuit design for IoT, and serves as an excellent starting point for further learning, thanks to the broad coverage of topics and selected references makes it very well suited for practicing engineers and scientists working in the hardware and chip design for IoT, and as textbook for senior undergraduate, graduate and postgraduate students ( familiar with analog and digital circuits).
Many methods and models have been proposed for solving difficult problems such as prediction, planning and knowledge discovery in application areas such as bioinformatics, speech and image analysis. Most, however, are designed to deal with static processes which will not change over time. Some processes - such as speech, biological information and brain signals - are not static, however, and in these cases different models need to be used which can trace, and adapt to, the changes in the processes in an incremental, on-line mode, and often in real time. This book presents generic computational models and techniques that can be used for the development of evolving, adaptive modelling systems. The models and techniques used are connectionist-based (as the evolving brain is a highly suitable paradigm) and, where possible, existing connectionist models have been used and extended. The first part of the book covers methods and techniques, and the second focuses on applications in bioinformatics, brain study, speech, image, and multimodal systems. It also includes an extensive bibliography and an extended glossary. Evolving Connectionist Systems is aimed at anyone who is interested in developing adaptive models and systems to solve challenging real world problems in computing science or engineering. It will also be of interest to researchers and students in life sciences who are interested in finding out how information science and intelligent information processing methods can be applied to their domains.