Download Free Special Issue On Frequency Selective Surfaces Book in PDF and EPUB Free Download. You can read online Special Issue On Frequency Selective Surfaces and write the review.

"...Ben has been the world-wide guru of this technology, providing support to applications of all types. His genius lies in handling the extremely complex mathematics, while at the same time seeing the practical matters involved in applying the results. As this book clearly shows, Ben is able to relate to novices interested in using frequency selective surfaces and to explain technical details in an understandable way, liberally spiced with his special brand of humor... Ben Munk has written a book that represents the epitome of practical understanding of Frequency Selective Surfaces. He deserves all honors that might befall him for this achievement." -William F. Bahret. Mr. W. Bahret was with the United States Air Force but is now retired. From the early 50s he sponsored numerous projects concerning Radar Cross Section of airborne platforms in particular antennas and absorbers. Under his leadership grew many of the concepts used extensively today, as for example the metallic radome. In fact, he is by many considered to be the father of stealth technology. "This book compiles under one cover most of Munk's research over the past three decades. It is woven with the physical insight that he has gained and further developed as his career has grown. Ben uses mathematics to whatever extent is needed, and only as needed. This material is written so that it should be useful to engineers with a background in electromagnetics. I strongly recommend this book to any engineer with any interest in phased arrays and/or frequency selective surfaces. The physical insight that may be gained from this book will enhance their ability to treat additional array problems of their own." -Leon Peters, Jr. Professor Leon Peters, Jr., was a professor at the Ohio State University but is now retired. From the early sixties he worked on, among many other things, RCS problems involving antennas and absorbers. This book presents the complete derivation of the Periodic Method of Moments, which enables the reader to calculate quickly and efficiently the transmission and reflection properties of multi-layered Frequency Selective Surfaces comprised of either wire and/or slot elements of arbitrary shape and located in a stratified medium. However, it also gives the reader the tools to analyze multi-layered FSS's leading to specific designs of the very important Hybrid Radome, which is characterized by constant band width with angle of incidence and polarization. Further, it investigates in great detail bandstop filters with large as well as narrow bandwidth (dichroic surfaces). It also discusses for the first time, lossy elements used in producing Circuit Analog absorbers. Finally, the last chapter deals with power breakdown of FSS's when exposed to pulsed signals with high peak power. The approach followed by most other presentations simply consists of expanding the fields around the FSS, matching the boundary conditions and writing a computer program. While this enables the user to obtain calculated results, it gives very little physical insight and no help in how to design actual multi-layered FSS's. In contrast, the approach used in this title analyzes all curves of desired shapes. In particular, it discusses in great detail how to produce radomes made of FSS's located in a stratified medium (Hybrid Radomes), with constant band width for all angles of incidence and polarizations. Numerous examples are given of great practical interest. More specifically, Chapter 7 deals with the theory and design of bandpass radomes with constant bandwidth and flat tops. Examples are given for mono-, bi- and tri-planar designs. Chapter 8 deals with bandstop filters with broad as well as narrow bandwidth. Chapter 9 deals with multi-layered FSS of lossy elements, namely the so-called Circuit Analog Absorbers, designed to yield outstanding absorption with more than a decade of bandwidth. Features material previously labeled as classified by the United States Air Force.
This volume provides a consolidated reference for the applications of frequency selective surfaces (FSS) technology in different sectors such as wireless communications, smart buildings, microwave and medical industries. It covers all aspects of metamaterial FSS technology starting from theoretical simulation, fabrication and measurement all the way to actual hardware implementation. Also included are in-depth discussions on the design methodologies of metamaterial FSS structures and their practical implementation in devices and components. It will be of interest to researchers and engineers working on developing metamaterial-FSS technology.
In this book, experts from academia and industry present the latest advances in scientific theory relating to applied electromagnetics and examine current and emerging applications particularly within the fields of electronics, communications, and computer technology. The book is based on presentations delivered at APPEIC 2014, the 1st Applied Electromagnetic International Conference, held in Bandung, Indonesia in December 2014. The conference provided an ideal platform for researchers and specialists to deliver both theoretically and practically oriented contributions on a wide range of topics relevant to the theme of nurturing applied electromagnetics for human technology. Many novel aspects were addressed, and the contributions selected for this book highlight the relevance of advances in applied electromagnetics to a variety of industrial engineering problems and identify exciting future directions for research.
Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.
On June 1St 2004 the Faculty of Electrical Engineering and Information Technology of the Technische Universitat Miinchen bestowed the degree of the doctor honoris causa to Leopold B. Felsen, for extraordinary achievements in the theory of electromag netic fields. On this occasion on June 1St and 2nd 2004 at the Technische Universitat Miinchen a symposium on "Fields, Networks, Computational Methods, and Systems: A Modern View of Engineering Electrodynamics" in honor of Leopold B. Felsen was organized. The symposium topic focused on an important area of Leopold Felsen research interests and, as the title emphasizes, on a modern view of applied Electro dynamics. While the fundamental physical laws of electrodynamics are well known, research in this field is experiencing a steady continuous growth. The problem -solving approaches of, say, twenty years ago may seem now fairly obsolete since considerable progress has been made in the meantime. In this monograph we collect samples of present day state of the art in dealing with electromagnetic fields, their network theory representation, their computation and, finally, on system applications. The network formulation of field problems can improve the problem formulation and also contribute to the solution methodology. Network theory systematic approaches for circuit analysis are based on the separation of the circuit into the connection circuit and the circuit elements. Many applications in science and technology rely on computations of the electromagnetic field in either man-made or natural complex structures.
This book contains the ceremonials and the proceedings pertaining to the Int- national Symposium CCN2005 on “Complex Computing-Networks: A Link between Brain-like and Wave-Oriented Electrodynamics Algorithms,” convened at Do ?u ? University of Istanbul, Turkey, on 13–14 June 2005, in connection with the bestowal of the honorary doctorate degrees on Professors Leopold B. Felsen and Leon O. Chua, for their extraordinary achievements in electromagnetics, and n- linear systems, respectively. The symposium was co-organized by Cem Göknar and Levent Sevgi, in consultation with Leopold B. Felsen and Leon O. Chua. Istanbul is a city with wonderful natural and historical surroundings, a city not only interconnecting Asia and Europe but also Eastern and Western cultures. Therefore, CCN2005 was a memorable event not only in the lifetime of Drs. Felsen, Chua, and their families, but also for all the other participants who were there to congratulate the recipients and participate in the symposium.
Presenting the latest developments in telecommunication and millimeter technology, this reference explains how recent research should be used for creating adaptable designs and applications, and offers alternative telecommunication technology for achieving an adaptable millimeter wave reflector imaging system. A discussion of an adaptable reflector that can be integrated in a wave-imaging system to reduce noise is also included.
In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields have been recognized by awarding Nobel prizes to seven physicists in the last twenty years. The volumes in this series which have appeared up to now contain nearly 190 review articles by distinguished research workers, which have become permanent records for many important developments. They have helped optical scientists and optical engineers to stay abreast of their fields. There is no sign that developments in optics are slowing down or becoming less interesting. - Gaussian apodization and beam propagation - Electromagnetically-induced transparency - Three-dimensional electromagnetic fields - Quantum cryptography - Optical quantum cloning
This new addition to the prestigious Wiley Series in Microwave and Optical Engineering presents the first comprehensive coverage of Frequency Selective Surfaces (FSS) and active grid arrays, the two-dimensional periodically arranged array elements which may be etched on, or imbedded in, one or multiple layers of dielectric laminates. Because of its filtering frequency properties, this technology, which has attracted much interest over the past two decades, is being used to create filtering devices in microwave and higher frequency bands. With Frequency Selective Surface and Grid Array, it is no longer necessary to sift through a multitude of research papers and reports. Here, in one self-contained volume, is a thorough and up-to-date treatment of the concept, theory, applications, design, and fabrication techniques for periodic arrays. Furthermore, the book provides a complete reference for the technological advances in FSS, including the recent technology of active grid arrays. The first part of the book is devoted to the fundamentals and analytical techniques pertaining to FSS and grid arrays, including the advanced analyses of the conjugate gradient method and the generalized mode-matching technique with multiple dielectrics or nonsimilar grid arrays. In the second part, the book deals with implementation and application, describing the numerous applications of this technology, from the reflector antenna system used in satellite and spacecraft communications and bandpass radome to solar energy grids. The expert contributions to this volume make it useful both as a tutorial and as a reference for project and system/design engineers working with antennas, optics, millimeter waves, microwaves, radar, and low observable radomes. A comprehensive and self-contained reference for FSS and grid array technology Frequency Selective Surfaces (FSS), the two-dimensional periodic array elements with frequency filtering properties, have made important advances over the past two decades. They provide filtering devices in microwave and higher frequency bands with applications ranging from bandpass radome to solar energy grids—including satellite and spacecraft communications. Written by experts in the field and edited by Dr. T. K. Wu, an internationally recognized researcher in electromagnetics, Frequency Selective Surface and Grid Array provides the first comprehensive look at the theory, measurements, manufacturing, and applications of FSS and grid array technology. This publication brings together a wealth of information previously not available in book form, as well as material that has not been published anywhere, including: Passive and active grid design concepts and analysis, as well as FSS materials and fabrication techniques Practical design of frequency selective surface, high-performance bandpass radome, and active grid array Detailed equations for the reaction integrals Three computer codes to get readers started in the design of FSS and grid array (disk included) Case studies of FSS applications to multiband communication antenna systems Tables, figures, references, and numerous examples of practical FSS and grid array designs A tutorial analysis that includes the multilayer grid and dielectrics Frequency Selective Surface and Grid Array is an invaluable planning and design resource for research engineers and scientists dealing with FSS and grid array, as well as a handy reference for students and professionals entering the field.