Download Free Special Issue On Energy Analysis Book in PDF and EPUB Free Download. You can read online Special Issue On Energy Analysis and write the review.

The chapters in the book cover a broad range of aspects regarding the relationship between natural resource use and long-term economic development. The book surveys existing literature as well as adds to frontier research. In particular, the following topics are studied: incentives for adoption and diffusion of clean technology, resource scarcity and limits to growth, international convergence of energy intensity, and the social norms shaping resource depletion.
The transition towards renewable energy sources and “green” technologies for energy generation and storage is expected to mitigate the climate emergency in the coming years. However, in many cases, this progress has been hampered by our dependency on critical materials or other resources that are often processed at high environmental burdens. Yet, many studies have shown that environmental and energy issues are strictly interconnected and require a comprehensive understanding of resource management strategies and their implications. Life cycle assessment (LCA) is among the most inclusive analytical techniques to analyze sustainability benefits and trade-offs within complex systems and, in this Special Issue, it is applied to assess the mutual influences of environmental and energy dimensions. The selection of original articles, reviews, and case studies addressed covers some of the main driving applications for energy requirements and greenhouse gas emissions, including power generation, bioenergy, biorefinery, building, and transportation. An insightful perspective on the current topics and technologies, and emerging research needs, is provided. Alone or in combination with integrative methodologies, LCA can be of pivotal importance and constitute the scientific foundation on which a full system understanding can be reached.
Recent Advances in Renewable Energy Technologies is a comprehensive reference covering critical research, laboratory and industry developments on renewable energy technological, production, conversion, storage, and management, including solar energy systems (thermal and photovoltaic), wind energy, hydropower, geothermal energy, bioenergy and hydrogen production, and large-scale development of renewable energy technologies and their impact on the global economy and power capacity. Technological advancements include resources assessment and deployment, materials performance improvement, system optimization and sizing, instrumentation and control, modeling and simulation, regulations, and policies.Each modular chapter examines recent advances in specific renewable energy systems, providing theoretical and applied aspects of system optimization, control and management and supports them with global case studies demonstrating practical applications and economical and environmental aspects through life cycle analysis. The book is of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. - Focuses on the progress and research trends in solar, wind, biomass, and hydropower and geothermal energy production and conversion - Includes advanced techniques for the distribution, management, optimization, and storage of heat and energy using case studies
The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. - Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies - Offers a comprehensive list of all current numerical and experimental results of polygeneration available - Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results
Thought leaders and experts offer the most current information and insights into energy finance Energy Finance and Economics offers the most up-to-date information and compelling insights into the finance and economics of energy. With contributions from today's thought leaders who are experts in various areas of energy finance and economics, the book provides an overview of the energy industry and addresses issues concerning energy finance and economics. The book focuses on a range of topics including corporate finance relevant to the oil and gas industry as well as addressing issues of unconventional, renewable, and alternative energy. A timely compendium of information and insights centering on topics related to energy finance Written by Betty and Russell Simkins, two experts on the topic of the economics of energy Covers special issues related to energy finance such as hybrid cars, energy hedging, and other timely topics In one handy resource, the editors have collected the best-thinking on energy finance.
Sustainability is a new, important discourse aimed at promoting a new strategy in the development of energy, water and environmental (EWE) systems — the key components that affect the quality of life on our planet. It is becoming increasingly clear that the quest for sustainable development requires integrating economic, social, cultural, political and ecological factors. The behavior and properties of an EWE system arise not merely from the properties of its component elements, but also to a large degree also from the nature and intensity of their dynamic interlinkages. This volume helps clarify the complexity of these problems by providing a deeper understanding of the implications of the different aspects of sustainability.This work contains a collection of selected, peer-reviewed and state-of-the-art reflecting papers that were presented at the Third Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems that was held in June 5-10, 2005 in Dubrovnik, Croatia.
Advances of Artificial Intelligence in a Green Energy Environment reviews the new technologies in intelligent computing and AI that are reducing the dimension of data coverage worldwide. This handbook describes intelligent optimization algorithms that can be applied in various branches of energy engineering where uncertainty is a major concern. Including AI methodologies and applying advanced evolutionary algorithms to real-world application problems for everyday life applications, this book considers distributed energy systems, hybrid renewable energy systems using AI methods, and new opportunities in blockchain technology in smart energy. Covering state-of-the-art developments in a fast-moving technology, this reference is useful for engineering students and researchers interested and working in the AI industry. - Looks at new techniques in artificial intelligence (AI) reducing the dimension of data coverage worldwide - Chapters include AI methodologies using enhanced hybrid swarm-based optimization algorithms - Includes flowchart diagrams for exampling optimizing techniques
This book re-conceptualizes energy justice as a unifying agenda for scholars and practitioners working on the issues faced in the trilemna of energy security, poverty and climate change. McCauley argues that justice should be central to the rebalancing of the global energy system and also provides an assessment of the key injustices in our global energy systems of production and consumption. Energy Justice develops a new innovative analytical framework underpinned by principles of justice designed for investigating unfairness and inequalities in energy availability, accessibility and sustainability. It applies this framework to fossil fuel and alternative low carbon energy systems with reference to multiple case studies throughout the world. McCauley also presents an energy justice roadmap that inspires new solutions to the energy trilemna. This includes how we redistribute the benefits and burdens of energy developments, how to engage the new energy ‘prosumer’ and how to recognise the unrepresented. This book will appeal to academics and students interested in issues of security and justice within global energy decision-making.