Download Free Special Issue Modeling And Control Of Breathing Book in PDF and EPUB Free Download. You can read online Special Issue Modeling And Control Of Breathing and write the review.

This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally. Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.
The field of neural control of breathing has advanced rapidly in the past two decades, with the emergence of many new and promising research directions of increasing sophistication. The complexity and diversity of the current methodologies signify its remarkable vivacity, albeit at the price of much confusion. Captured in this book are the broad and intricate nature of the field and its multifaceted frontiers, including aspects of genetics, cell and molecular biology, comparative biology, neurophysiology, neurochemistry, neuroanatomy, imaging, human physiology in health and disease, and influence of environmental factors. Major topics include chemosensitivity, respiratory sensation, respiratory neurons, rhythmogenesis, plasticity, development, chemoreflex and exercise, respiratory instability and variability with behavioral and sleep states, etc., which are systematically laid out in the book for easy referencing.
The origins of what have come to be known as the "Oxford" Conferences on modelling and the control of breathing can be traced back to a discussion between Dan Cunningham and Richard Hercynski at a conference dinner at the Polish Academy of Sciences in 1971. Each felt that they had benefited from the different perspectives from which the topic of ventilatory control was approached - predominantly physiological in the case of Dr Cunningham and predominantly mathematical in the case of Dr Hercynski. Their judgement at that time was that a conference on the control of breathing which allowed investigators with these different (but related) scientific perspectives to present and discuss their work, might prove fruitful. We would judge that this has amply been borne out, based upon the success of the series of conferences which resulted from that seminal dinner conversation. The first conference, entitled "Modelling of a Biological Control System: The Regulation of Breathing" was held in Oxford, UK, in 1978. Subsequent conferences were: "Modelling and the Control of Breathing" at Lake Arrowhead, California, in 1982; "Con cepts and Formulations in the Control of Breathing" in Solignac, France, in 1985; "Respi ratory Control: A Modeling Perspective" at Grand Lakes, Colorado, in 1988; and "Control of Breathing and Its Modelling Persepctive" at the Fuji Institute in Japan in 1991. The conferences, subsequent to the one in Oxford, have all resulted in well-received published proceedings.
Proceedings of a Symposium held in Huntsville, Canada, September 17-21, 1997
The fifth Oxford Conference was held on September 17th-19th, 1991, at the Fuji Institute of Training in Japan -the first time that the meeting has taken place in the Asian area. The facts that only a relatively few Japanese had attended previous Oxford Conferences and that Japan is far from other regions with possible participants made the organizers anticipate a small attendance at the meeting. However, contrary to our expectations, 198 active members (72 foreign and 126 domestic participants) submitted 146 papers from 15 countries. This was far beyond our preliminary estimate and could have caused problems in providing accommodation for the participants and in programming their scientific presentations. These difficulties, however, were successfully overcome by using nearby hotels, by telecasting presentations into a second lecture room and by displaying a substantial number of poster presentations during the whole period of the meeting. The meeting had two types of sessions: regular and current topics. The first paper in each session represented a shon overview or introduction so as to make it easier for the audience to comprehend the problems at issue. Because of the large number of papers submitted, carefully selected speakers (mostly well-known scholars) made excellent presentations that were followed by lively discussions. In this way, the conference laid a foundation on which to base its continued scientific success.
Post Genomic Perspectives in Modeling and Control of Breathing is comprised of the proceedings of the IXth Oxford Conference on Modeling and Control of Breathing, held September 13-16, 2003 in Paris, France. This publication is placed within the general framework of post-genomic neurobiology, pathology, and the precise example of the rhythmic respiratory neural assembly being used to understand how genetic networks have been selected and conserved in the vertebrate brain. Specific topics include: ion channels and synapses responsible for respiratory rhythmogenesis and plasticity; pre- and post-natal development of the respiratory rhythm; chemosensory transduction and chemo-afferent signalling. These valuable insights open new avenues as to why the genetic codes underlying a vital function such as breathing have been selected, conserved, or optimized during evolution – a major issue of post-genomic biology. This critical issue will be considered from both top-down and bottom-up integrative modeling standpoints, with a view to elucidating the functional genomics linking discrete molecules to the integrated system that regulates breathing.
The fourth Oxford Conference entitled "Control of Breathing: A Model ing Perspective" was held in September of 1988 at Grand Lake, Colorado. Grand Lake, also called Spirit Lake, was chosen for the fourth meet i ng so as to continue the meditative atmosphere of the previ ous meetings and to put the conference on a new higher plane (8,500 feet). The weather, as promised, exhibited its random-like rain showers. The snow report became essential for traveling the 12,000 foot passes to and from Grand Lake. Even the servi ces such as telephone and elect ri city proved to be uncertain. In all, the overall atmosphere of Spirit Lake contributed to an uninhibited free-style of presentation and interaction. All of us who attend the Oxford Conferences share a common interest in exploring respiratory control and the regulation of breathing. Modeling has become an adjunct to our exploration process. For us, models are tools that extend our ability to conceptualize just as instruments are tools that extend our ability to measure. And so these meetings attract physicians, physiologists, mathematicians and engineers who are modelers and modelers who are engineers, mathematicians, physiologists and physicians. Four of these physician-modelers have now passed away. They have been very important mentors for many of us. J. W. Bellville was my Ph.D. dissertation advisor at Stanford who introduced me to the intrigue of respiratory control. G. F. Filley was my colleague at the University of Colorado who enhanced my thinking about respiratory control. E. S.
The respiratory tract has been used to deliver biologically active chemicals into the human body for centuries. However, the lungs are complex in their anatomy and physiology, which poses challenges to drug delivery. Inhaled formulations are generally more sophisticated than those for oral and parenteral administration. Pulmonary drug development is therefore a highly specialized area because of its many unique issues and challenges. Rapid progress is being made and offers novel solutions to existing treatment problems. Advances in Pulmonary Drug Delivery highlights the latest developments in this field.