Download Free Special Issue Imprecise Probability In Statistical Inference And Decision Making Book in PDF and EPUB Free Download. You can read online Special Issue Imprecise Probability In Statistical Inference And Decision Making and write the review.

In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, including theory and applications reflecting the current state if the art. Each chapter is written by experts on the respective topics, including: Sets of desirable gambles; Coherent lower (conditional) previsions; Special cases and links to literature; Decision making; Graphical models; Classification; Reliability and risk assessment; Statistical inference; Structural judgments; Aspects of implementation (including elicitation and computation); Models in finance; Game-theoretic probability; Stochastic processes (including Markov chains); Engineering applications. Essential reading for researchers in academia, research institutes and other organizations, as well as practitioners engaged in areas such as risk analysis and engineering.
In recent years, the theory has become widely accepted and has beenfurther developed, but a detailed introduction is needed in orderto make the material available and accessible to a wide audience.This will be the first book providing such an introduction,covering core theory and recent developments which can be appliedto many application areas. All authors of individual chapters areleading researchers on the specific topics, assuring high qualityand up-to-date contents. An Introduction to Imprecise Probabilities provides acomprehensive introduction to imprecise probabilities, includingtheory and applications reflecting the current state if the art.Each chapter is written by experts on the respective topics,including: Sets of desirable gambles; Coherent lower (conditional)previsions; Special cases and links to literature; Decision making;Graphical models; Classification; Reliability and risk assessment;Statistical inference; Structural judgments; Aspects ofimplementation (including elicitation and computation); Models infinance; Game-theoretic probability; Stochastic processes(including Markov chains); Engineering applications. Essential reading for researchers in academia, researchinstitutes and other organizations, as well as practitionersengaged in areas such as risk analysis and engineering.
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
This Festschrift celebrates Teddy Seidenfeld and his seminal contributions to philosophy, statistics, probability, game theory and related areas. The 13 contributions in this volume, written by leading researchers in these fields, are supplemented by an interview with Teddy Seidenfeld that offers an abbreviated intellectual autobiography, touching on topics of timeless interest concerning truth and uncertainty. Indeed, as the eminent philosopher Isaac Levi writes in this volume: "In a world dominated by Alternative Facts and Fake News, it is hard to believe that many of us have spent our life’s work, as has Teddy Seidenfeld, in discussing truth and uncertainty." The reader is invited to share this celebration of Teddy Seidenfeld’s work uncovering truths about uncertainty and the penetrating insights they offer to our common pursuit of truth in the face of uncertainty.
Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs
The contributions collected in this book have been written by well-known statisticians to acknowledge Ludwig Fahrmeir's far-reaching impact on Statistics as a science, while celebrating his 65th birthday. The contributions cover broad areas of contemporary statistical model building, including semiparametric and geoadditive regression, Bayesian inference in complex regression models, time series modelling, statistical regularization, graphical models and stochastic volatility models.
This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.
Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.