Download Free Special Issue Containing A Selection Of Papers Presented At The Second Georgia Tech International Conference In Bioinformatics On In Silico Biology Sequence Structure And Function Book in PDF and EPUB Free Download. You can read online Special Issue Containing A Selection Of Papers Presented At The Second Georgia Tech International Conference In Bioinformatics On In Silico Biology Sequence Structure And Function and write the review.

Virus bioinformatics is evolving and succeeding as an area of research in its own right, representing the interface of virology and computer science. Bioinformatic approaches to investigate viral infections and outbreaks have become central to virology research, and have been successfully used to detect, control, and treat infections of humans and animals. As part of the Third Annual Meeting of the European Virus Bioinformatics Center (EVBC), we have published this Special Issue on Virus Bioinformatics.
Lesk provides an accessible and thorough introduction to a subject which is becoming a fundamental part of biological science today. The text generates an understanding of the biological background of bioinformatics.
Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.
In contrast to existing books on immunoinformatics, this volume presents a cross-section of immunoinformatics research. The contributions highlight the interdisciplinary nature of the field and how collaborative efforts among bioinformaticians and bench scientists result in innovative strategies for understanding the immune system. Immunoinformatics is ideal for scientists and students in immunology, bioinformatics, microbiology, and many other disciplines.
Where did SARS come from? Have we inherited genes from Neanderthals? How do plants use their internal clock? The genomic revolution in biology enables us to answer such questions. But the revolution would have been impossible without the support of powerful computational and statistical methods that enable us to exploit genomic data. Many universities are introducing courses to train the next generation of bioinformaticians: biologists fluent in mathematics and computer science, and data analysts familiar with biology. This readable and entertaining book, based on successful taught courses, provides a roadmap to navigate entry to this field. It guides the reader through key achievements of bioinformatics, using a hands-on approach. Statistical sequence analysis, sequence alignment, hidden Markov models, gene and motif finding and more, are introduced in a rigorous yet accessible way. A companion website provides the reader with Matlab-related software tools for reproducing the steps demonstrated in the book.
This book provides both in-depth background and up-to-date information in this area. The chapters are organized by general themes and principles, written by experts who illustrate topics with current findings. Topics covered include: - the role of ions and hydration in protein-nucleic acid interactions - transcription factors and combinatorial specificity - indirect readout of DNA sequence - single-stranded nucleic acid binding proteins - nucleic acid junctions and proteins, - RNA protein recognition - recognition of DNA damage. It will be a key reference for both advanced students and established scientists wishing to broaden their horizons.
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools provides a coherent and friendly treatment of bioinformatics for any student or scientist within biology who has not routinely performed bioinformatic analysis. The book discusses the relevant principles needed to understand the theoretical underpinnings of bioinformatic analysis and demonstrates, with examples, targeted analysis using freely available web-based software and publicly available databases. Eschewing non-essential information, the work focuses on principles and hands-on analysis, also pointing to further study options. - Avoids non-essential coverage, yet fully describes the field for beginners - Explains the molecular basis of evolution to place bioinformatic analysis in biological context - Provides useful links to the vast resource of publicly available bioinformatic databases and analysis tools - Contains over 100 figures that aid in concept discovery and illustration
Proteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.