Download Free Special Issue Assessment Of Historical Timber Structures Book in PDF and EPUB Free Download. You can read online Special Issue Assessment Of Historical Timber Structures and write the review.

Wood-based materials are CO2-neutral, renewable, and considered to be environmentally friendly. The huge variety of wood species and wood-based composites allows a wide scope of creative and esthetic alternatives to materials with higher environmental impacts during production, use and disposal. Quality of wood is influenced by the genetic and environmental factors. One of the emerging uses of wood are building and construction applications. Modern building and construction practices would not be possible without use of wood or wood-based composites. The use of composites enables using wood of lower quality for the production of materials with engineered properties for specific target applications. Even more, the utilization of such reinforcing particles as carbon nanotubes and nanocellulose enables development of a new generation of composites with even better properties. The positive aspect of decomposability of waste wood can turn into the opposite when wood or wood-based materials are exposed to weathering, moisture oscillations, different discolorations, and degrading organisms. Protective measures are therefore unavoidable for many outdoor applications. Resistance of wood against different aging factors is always a combined effect of toxic or inhibiting ingredients on the one hand, and of structural, anatomical, or chemical ways of excluding moisture on the other.
Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.
By presenting the work of the RILEM Technical Committee 245-RTE, the book provides an overview of the existing techniques for the reinforcement of timber elements, joints and structures. It consists of two parts: part I examines state-of-the-art information on reinforcement techniques, summarizes the current status of standardization, and covers STS, GiR, FRP and nanotechnology. In part II several applications of reinforcement are discussed: these include traditional structures, traditional timber frame walls, light-frame shear walls, roofs, floors, and carpentry joints. The book will benefit academics, practitioners, industry and standardization committees interested in the reinforcement of existing timber elements, joints and structures.
This book collects selected high-quality papers published in 2018–2020 to inaugurate the “Natural Hazards” Section of the Geosciences journal. The topics encompass: trends in publications at international level in the field of natural hazards research; the role of Big Data in natural disaster management; assessment of seismic risk through the understanding and quantification of its different components; climatic/hydro-meteorological hazards; and finally, the scientific analysis and disaster forensics of recent natural hazard events. The target audience includes not only specialists, but also graduate students who wish to approach the challenging, but also fascinating
This book is a printed edition of the Special Issue Reducing the Seismic Vulnerability of Existing Buildings: Assessment and Retrofit that was published in Buildings
This volume contains the proceedings of the 11th International Conference on Structural Analysis of Historical Constructions (SAHC) that was held in Cusco, Peru in 2018. It disseminates recent advances in the areas related to the structural analysis of historical and archaeological constructions. The challenges faced in this field show that accuracy and robustness of results rely heavily on an interdisciplinary approach, where different areas of expertise from managers, practitioners, and scientists work together. Bearing this in mind, SAHC 2018 stimulated discussion on the new knowledge developed in the different disciplines involved in analysis, conservation, retrofit, and management of existing constructions. This book is organized according to the following topics: assessment and intervention of archaeological heritage, history of construction and building technology, advances in inspection and NDT, innovations in field and laboratory testing applied to historical construction and heritage, new technologies and techniques, risk and vulnerability assessments of heritage for multiple types of hazards, repair, strengthening, and retrofit of historical structures, numerical modeling and structural analysis, structural health monitoring, durability and sustainability, management and conservation strategies for heritage structures, and interdisciplinary projects and case studies. This volume holds particular interest for all the community interested in the challenging task of preserving existing constructions, enable great opportunities, and also uncover new challenges in the field of structural analysis of historical and archeological constructions.
A comprehensive approach to the preservation of historic timber structures. The authors demonstrate that repair methods must be geared towards the specific cultural, architectural and environmental conditions of the area where the timber structure is located.
Rehabilitation of heritage monuments provides sustainable development and cultural significance to a region. The most sensitive aspect of the refurbishment of existing buildings lies in the renovation and recovery of structural integrity and public safety. The Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures evaluates developing contributions in the field of earthquake engineering with regards to the analysis and treatment of structural damage inflicted by seismic activity. This book is a vital reference source for professionals, researchers, students, and engineers active in the field of earthquake engineering who are interested in the emergent developments and research available in the preservation and rehabilitation of heritage buildings following seismic activity.
Faced with man-made climate change and the need to provide housing for a growing world population, society needs to rethink the way future buildings are made. Wood is a truly renewable building material that is unlimited in supply if its growth and harvest are sustainably managed. Recent technological advancements in engineering allow the use of timber for the construction of multi-story structures, turning our buildings into carbon sinks rather than becoming sources for CO2-emissions. The book presents convincing arguments for the increased use of wood as an alternative to more fossil fuel intensive building materials, with the goal of demonstrating that an integrated approach can have the potential for positive impact on the environment, local economies, and the building culture at large.