Download Free Special Issue Advances In Stabilized Methods In Computational Mechanics Book in PDF and EPUB Free Download. You can read online Special Issue Advances In Stabilized Methods In Computational Mechanics and write the review.

One of the main ways by which we can understand complex processes is to create computerised numerical simulation models of them. Modern simulation tools are not used only by experts, however, and reliability has therefore become an important issue, meaning that it is not sufficient for a simulation package merely to print out some numbers, claiming them to be the desired results. An estimate of the associated error is also needed. The errors may derive from many sources: errors in the model, errors in discretization, rounding errors, etc. Unfortunately, this situation does not obtain for current packages and there is a great deal of room for improvement. Only if the error can be estimated is it possible to do something to reduce it. The contributions in this book cover many aspects of the subject, the main topics being error estimates and error control in numerical linear algebra algorithms (closely related to the concept of condition numbers), interval arithmetic and adaptivity for continuous models.
The author presents a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. The local weighted residuals, that result from an extension of the so-called Dual-Weighted-Residual method, are used in a feed-back process for generating economical meshes. Based on several model problems, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities.
This book provides a critical assessment of current knowledge and indicates new challenges which are brought about at present times by fighting man-made and natural hazards in transient analysis of structures. The latter concerns both permanently fixed structures, such as those built to protect people and/or sensitive storage material; or special structures, like bridges and tunnels; and moving structures such as trains, planes, ships or cars.
Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues covers the domain of theoretical, experimental and computational mechanics as well as interdisciplinary issues, such as industrial applications. Special attention is paid to the theoretical background and practical applications of computational mechanics.This volume
Advances in Quantum Chemistry: Lowdin Volume presents a series of articles exploring aspects of the application of quantum mechanics to atoms, molecules, and solids. Celebrates Per-Olov Lowdin, who would have been 100 in 2016 Contains papers by many who use his ideas in theoretical chemistry and physics today
Advanced materials play a crucial role in modern engineering applications where they are often exposed to complex loading and environmental conditions. In many cases, new approaches are needed to characterise these materials and to model their behaviour. Such approaches should be calibrated and validated by specific experimental techniques, quantifying both microstructural features and respective mechanisms at various length scales. The book provides an overview of modern modelling tools and experimental methods that can be employed to analyse and estimate properties and performance of advanced materials. A special feature of the book is the analysis of case studies used to demonstrate the strategies of solving the real-life problems, in which the microstructure of materials directly affects their response to loading and/or environmental conditions. The reader will benefit from a detailed analysis of various methods as well as their implementation for dealing with various advanced materials.
Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.
This edited book provides invited and reviewed contributions in mathematical, physical and experimental modelling and simulations in all fluid mechanics branches. Contributions explore the emerging and state-of-the-art tools in the field authored by well-established researchers to derive improved performance of modelling and simulations. Serving the multidisciplinary fluid mechanics community, this book aims to publish new research work that enhances the prediction and understanding of fluid mechanics and balances from academic theory to practical applications through modelling, numerical studies, algorithms and simulation. The book offers researchers, students and practitioners significant insights on modelling and simulations in fluid mechanics. It offers readers a range of academic contributions on fluid mechanics by researchers that have become leaders in their field. The research work presented in this book will add values to the existing literature in terms of what needs to be done better to direct modelling and simulations towards a growing and rapidly developing field.