Download Free Special Functions For Applied Scientists Book in PDF and EPUB Free Download. You can read online Special Functions For Applied Scientists and write the review.

This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
This book provides the knowledge of the newly-established supertrigonometric and superhyperbolic functions with the special functions such as Mittag-Leffler, Wiman, Prabhakar, Miller-Ross, Rabotnov, Lorenzo-Hartley, Sonine, Wright and Kohlrausch-Williams-Watts functions, Gauss hypergeometric series and Clausen hypergeometric series. The special functions can be considered to represent a great many of the real-world phenomena in mathematical physics, engineering and other applied sciences. The audience benefits of new and original information and references in the areas of the special functions applied to model the complex problems with the power-law behaviors. The results are important and interesting for scientists and engineers to represent the complex phenomena arising in applied sciences therefore graduate students and researchers in mathematics, physics and engineering might find this book appealing.
Complicated generalized special functions such as Meijer's G-functions and functions of matrix arguments are here presented at a level suitable for every potential user. This handbook is thus a valuable reference source and a manual for researchers and advanced students in mathematical statistics, mathematical physics, several branches of mathematics, engineering problems, econometrics, and various applied areas where transcendental functions are used.
Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science.
This handbook focuses on special functions in physics in the real and complex domain. It covers more than 170 different functions with additional numerical hints for efficient computation, which are useful to anyone who needs to program with other programming languages as well. The book comes with MATLAB-based programs for each of these functions and a detailed html-based documentation. Some of the explained functions are: Gamma and Beta functions; Legendre functions, which are linked to quantum mechanics and electrodynamics; Bessel functions; hypergeometric functions, which play an important role in mathematical physics; orthogonal polynomials, which are largely used in computational physics; and Riemann zeta functions, which play an important role, e.g., in quantum chaos or string theory. The book’s primary audience are scientists, professionals working in research areas of industries, and advanced students in physics, applied mathematics, and engineering.
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Physics, chemistry, and engineering undergraduates will benefit from this straightforward guide to special functions. Its topics possess wide applications in quantum mechanics, electrical engineering, and many other fields. 1968 edition. Includes 25 figures.
Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).