Download Free Special Cycles On Shimura Curves And The Shimura Lift Book in PDF and EPUB Free Download. You can read online Special Cycles On Shimura Curves And The Shimura Lift and write the review.

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.
This book outlines a functorial theory of integral models of (mixed) Shimura varieties and of their toroidal compactifications, for odd primes of good reduction. This is the integral version, developed in the author's thesis, of the theory invented by Deligne and Pink in the rational case. In addition, the author develops a theory of arithmetic Chern classes of integral automorphic vector bundles with singular metrics using the work of Burgos, Kramer and Kühn. The main application is calculating arithmetic volumes or "heights" of Shimura varieties of orthogonal type using Borcherds' famous modular forms with their striking product formula--an idea due to Bruinier-Burgos-Kühn and Kudla. This should be seen as an Arakelov analogue of the classical calculation of volumes of orthogonal locally symmetric spaces by Siegel and Weil. In the latter theory, the volumes are related to special values of (normalized) Siegel Eisenstein series. In this book, it is proved that the Arakelov analogues are related to special derivatives of such Eisenstein series. This result gives substantial evidence in the direction of Kudla's conjectures in arbitrary dimensions. The validity of the full set of conjectures of Kudla, in turn, would give a conceptual proof and far-reaching generalizations of the work of Gross and Zagier on the Birch and Swinnerton-Dyer conjecture. Titles in this series are co-published with the Centre de Recherches Mathématiques.
This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.
The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
In the thesis, we present some answers to the question What is an appropriate definition of Shimura curves in positive characteristics ? The answer is obvious for Shimura curves of PEL type due to the moduli interpretation. Thus what is more interesting is the answer on Shimura curves of Hodge type. Inspired by an example constructed by David Mumford, we find conditions on a proper smooth curve over a field of positive characteristic which guarantee that it lifts to a Shimura curve of Hodge type over the complex numbers. These conditions are in terms of geometry mod p, such as Barsotti-Tate groups, Dieudonne isocrystals, crystalline Hodge cycles and l-adic monodromy. Thus one can take them as definitions of Shimura curves in positive characteristics. More generally, We define ``weak" Shimura curves in characteristic p. Along the way, we prove if a Barsotti-Tate group is versally deformed over a proper curve over an algebraically closed field of positive characteristic, then it admits a unique deformation to the corresponding Witt ring. This deformation result serves as one of the key ingredients in the proofs.
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.