Download Free Spationtemporal Population Genomics Of Marine Species Book in PDF and EPUB Free Download. You can read online Spationtemporal Population Genomics Of Marine Species and write the review.

Population genomics has provided unprecedented opportunities to unravel the mysteries of marine organisms in the oceans' depths. The world's oceans, which make up 70% of our planet, encompass diverse habitats and host numerous unexplored populations and species. Population genomics studies of marine organisms are rapidly emerging and have the potential to transform our understanding of marine populations, species, and ecosystems, providing insights into how these organisms are evolving and how they respond to different stimuli and environments. This knowledge is critical for understanding the fundamental aspects of marine life, how marine organisms will respond to environmental changes, and how we can better protect and preserve marine biodiversity and resources. This book brings together leading experts in the field to address critical aspects of fundamental and applied research in marine species and share their research and insights crucial for understanding marine ecosystem diversity and function. It also discusses the challenges, opportunities and future perspectives of marine population genomics.
Ecology, Genetics and Evolution of Metapopulations is acollection of specially commissioned articles that looks at fragmented habitats, bringing together recent theoretical advances and empirical studies applying the metapopulation approach. Several chapters closely integrate ecology with genetics and evolutionary biology, and others illustrate how metapopulation concepts and models can be applied to answer questions about conservation, epidemiology, and speciation. The extensive coverage of theory from highly regarded scientists and the many substantive applications in this one-of-a-kind work make it invaluable to graduate students and researchers in a wide range of disciplines. - Provides a comprehensive and authoritative account of all aspects of metapopulation biology, integrating ecology, genetics, and evolution - Developed by recognized experts, including Hanski who won the Balzan Prize for Ecological Sciences - Covers novel applications of the metapopulation approach to conservation
Population genomics is revolutionizing wildlife biology, conservation, and management by providing key and novel insights into genetic, population and landscape-level processes in wildlife, with unprecedented power and accuracy. This pioneering book presents the advances and potential of population genomics in wildlife, outlining key population genomics concepts and questions in wildlife biology, population genomics approaches that are specifically applicable to wildlife, and application of population genomics in wildlife population and evolutionary biology, ecology, adaptation and conservation and management. It is important for students, researchers, and wildlife professionals to understand the growing set of population genomics tools that can address issues from delineation of wildlife populations to assessing their capacity to adapt to environmental change. This book brings together leading experts in wildlife population genomics to discuss the key areas of the field, as well as challenges, opportunities and future prospects of wildlife population genomics.
This book examines the importance of DNA molecules as fundamental genomic elements in different types of organisms. In recent years, a wide range of tools and techniques have become available to investigate the versatility of genomic variabilities, exchanges, and differentiations. This book presents data and information from population genetics and evolutionary biology, making it a useful resource for scientists worldwide.
Recently, technological progress and the rise of DNA barcoding efforts have led to a significant increase in the availability of molecular datasets on intraspecific variability. Carcinologists and other organismal biologists, who want to use molecular tools to investigate patterns on the scale of populations, face a bewildering variety of genetic m
Spatial Ecology addresses the fundamental effects of space on the dynamics of individual species and on the structure, dynamics, diversity, and stability of multispecies communities. Although the ecological world is unavoidably spatial, there have been few attempts to determine how explicit considerations of space may alter the predictions of ecological models, or what insights it may give into the causes of broad-scale ecological patterns. As this book demonstrates, the spatial structure of a habitat can fundamentally alter both the qualitative and quantitative dynamics and outcomes of ecological processes. Spatial Ecology highlights the importance of space to five topical areas: stability, patterns of diversity, invasions, coexistence, and pattern generation. It illustrates both the diversity of approaches used to study spatial ecology and the underlying similarities of these approaches. Over twenty contributors address issues ranging from the persistence of endangered species, to the maintenance of biodiversity, to the dynamics of hosts and their parasitoids, to disease dynamics, multispecies competition, population genetics, and fundamental processes relevant to all these cases. There have been many recent advances in our understanding of the influence of spatially explicit processes on individual species and on multispecies communities. This book synthesizes these advances, shows the limitations of traditional, non-spatial approaches, and offers a variety of new approaches to spatial ecology that should stimulate ecological research.
International Workshop on Marine Genetics - Rio 98
Population genomics has revolutionized various disciplines of biology including population, evolutionary, ecological and conservation genetics, plant and animal breeding, human health, medicine and pharmacology by allowing to address novel and long-standing questions with unprecedented power and accuracy. It employs large-scale or genome-wide genetic information and bioinformatics to address various fundamental and applied aspects in biology and related disciplines, and provides a comprehensive genome-wide perspective and new insights that were not possible before. These advances have become possible due to the development of new and low-cost sequencing and genotyping technologies and novel statistical approaches and software, bioinformatics tools, and models. Population genomics is tremendously advancing our understanding the roles of evolutionary processes, such as mutation, genetic drift, gene flow, and natural selection, in shaping up genetic variation at individual loci and across the genome and populations; improving the assessment of population genetic parameters or processes such as adaptive evolution, effective population size, gene flow, admixture, inbreeding and outbreeding depression, demography, and biogeography; resolving evolutionary histories and phylogenetic relationships of extant, ancient and extinct species; understanding the genomic basis of fitness, adaptation, speciation, complex ecological and economically important traits, and disease and insect resistance; facilitating forensics, genetic medicine and pharmacology; delineating conservation genetic units; and understanding the genetic effects of resource management practices, and assisting conservation and sustainable management of genetic resources. This Population Genomics book discusses the concepts, approaches, applications and promises of population genomics in addressing most of the above fundamental and applied crucial aspects in a variety of organisms from microorganisms to humans. The book provides insights into a range of emerging population genomics topics including population epigenomics, landscape genomics, seascape genomics, paleogenomics, ecological and evolutionary genomics, biogeography, demography, speciation, admixture, colonization and invasion, genomic selection, and plant and animal domestication. This book fills a vacuum in the field and is expected to become a primary reference in Population Genomics world-wide.
Scallops are among the better known shellfish and are widely distributed throughout the world. They are of great economic importance, support both commercial fisheries and mariculture efforts and occupy a unique niche in the marine environment. Contributions from world leaders in scallop research and culture cover all facets of scallop biology including anatomy, taxonomy, physiology, ecology, larval biology and neurobiology. Chapters are also devoted to diseases and parasites, genetics, population dynamics and the adductor muscle, with extensive reference lists provided for each chapter. Since the publication of the first edition of Scallops: Biology, Ecology and Aquaculture in 1991, commercial interest in scallops has grown globally and this is reflected in the seventeen extensive chapters covering both fisheries and aquaculture for all species of scallops in all countries where they are fished or cultured. The Second Edition is the only comprehensive treatise on the biology of scallops and is the definitive reference source for advanced undergraduate and graduate students, mariculturists, managers and researchers. It is a valuable reference for anyone interested in staying abreast of the latest advances in scallops.* Offers over 30 detailed chapters on the developments and ecology of scallops* Provides chapters on various cultures of scallops in China, Japan, Scandinivia, Eastern North American, Europe, and Eastern North America* Includes details of their reproduction, nervous system and behavior, genetics, disease and parasites, and much more* Complete updated version of the first edition
This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary multivariate ecological analysis. The second edition of this book features a complete revision to the R code and offers improved procedures and more diverse applications of the major methods. It also highlights important changes in the methods and expands upon topics such as multiple correspondence analysis, principal response curves and co-correspondence analysis. New features include the study of relationships between species traits and the environment, and community diversity analysis. This book is aimed at professional researchers, practitioners, graduate students and teachers in ecology, environmental science and engineering, and in related fields such as oceanography, molecular ecology, agriculture and soil science, who already have a background in general and multivariate statistics and wish to apply this knowledge to their data using the R language, as well as people willing to accompany their disciplinary learning with practical applications. People from other fields (e.g. geology, geography, paleoecology, phylogenetics, anthropology, the social and education sciences, etc.) may also benefit from the materials presented in this book. Users are invited to use this book as a teaching companion at the computer. All the necessary data files, the scripts used in the chapters, as well as extra R functions and packages written by the authors of the book, are available online (URL: http://adn.biol.umontreal.ca/~numericalecology/numecolR/).