Download Free Spatial Regression Models For The Social Sciences Book in PDF and EPUB Free Download. You can read online Spatial Regression Models For The Social Sciences and write the review.

Spatial Regression Models for the Social Sciences shows researchers and students how to work with spatial data without the need for advanced mathematical statistics. Focusing on the methods that are commonly used by social scientists, Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it by connecting it to social science research topics. Throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us.
This book shows how to model the spatial interactions between actors that are at the heart of the social sciences.
Space and geography are important aspects of social science research in fields such as criminology, sociology, political science, and public health. Many social scientists are interested in the spatial clustering of various behaviors and events. There has been a rapid development of interest in regression methods for analyzing spatial data over recent years, but little available on the topic that is aimed at graduate students and advanced undergraduate classes in the social sciences (most texts are for the natural sciences, or regional science, or economics, and require a good understanding of advanced statistics and probability theory). Spatial Regression Models for the Social Sciences fills the gap, and focuses on the methods that are commonly used by social scientists. Each spatial regression method is introduced in the same way. Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it, by connecting it to social science research topics. They try to avoid mathematical formulas and symbols as much as possible. Secondly, throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us. Spatial Regression Models for the Social Sciences provides comprehensive coverage of spatial regression methods for social scientists and introduces the methods in an easy-to-follow manner.
This is the first book to provide sociologists, criminologists, political scientists, and other social scientists with the methodological logic and techniques for doing spatial analysis in their chosen fields of inquiry. The book contains a wealth of examples as to why these techniques are worth doing, over and above conventional statistical techniques using SPSS or other statistical packages. GIS is a methodological and conceptual approach that allows for the linking together of spatial data, or data that is based on a physical space, with non-spatial data, which can be thought of as any data that contains no direct reference to physical locations.
Spatial Econometrics provides a modern, powerful and flexible skillset to early career researchers interested in entering this rapidly expanding discipline. It articulates the principles and current practice of modern spatial econometrics and spatial statistics, combining rigorous depth of presentation with unusual depth of coverage. Introducing and formalizing the principles of, and 'need' for, models which define spatial interactions, the book provides a comprehensive framework for almost every major facet of modern science. Subjects covered at length include spatial regression models, weighting matrices, estimation procedures and the complications associated with their use. The work particularly focuses on models of uncertainty and estimation under various complications relating to model specifications, data problems, tests of hypotheses, along with systems and panel data extensions which are covered in exhaustive detail. Extensions discussing pre-test procedures and Bayesian methodologies are provided at length. Throughout, direct applications of spatial models are described in detail, with copious illustrative empirical examples demonstrating how readers might implement spatial analysis in research projects. Designed as a textbook and reference companion, every chapter concludes with a set of questions for formal or self--study. Finally, the book includes extensive supplementing information in a large sample theory in the R programming language that supports early career econometricians interested in the implementation of statistical procedures covered. - Combines advanced theoretical foundations with cutting-edge computational developments in R - Builds from solid foundations, to more sophisticated extensions that are intended to jumpstart research careers in spatial econometrics - Written by two of the most accomplished and extensively published econometricians working in the discipline - Describes fundamental principles intuitively, but without sacrificing rigor - Provides empirical illustrations for many spatial methods across diverse field - Emphasizes a modern treatment of the field using the generalized method of moments (GMM) approach - Explores sophisticated modern research methodologies, including pre-test procedures and Bayesian data analysis
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. - Reviews the uses of ESF across linear regression, generalized linear regression, spatial autocorrelation measurement, and spatially varying coefficient models - Includes computer code and template datasets for further modeling - Provides comprehensive coverage of related concepts in spatial data analysis and spatial statistics
Within both the social and environmental sciences, much of the data collected is within a spatial context and requires statistical analysis for interpretation. The purpose of this book is to describe current methods for the analysis of spatial data. Methods described include data description, map interpolation, and exploratory and explanatory analyses. The book also examines spatial referencing, and methods for detecting problems, assessing their seriousness and taking appropriate action are discussed. This is an important text for any discipline requiring a broad overview of current theoretical and applied work for the analysis of spatial data sets. It will be of particular use to research workers and final year undergraduates in the fields of geography, environmental sciences and social sciences.
Spatial econometrics deals with spatial dependence and spatial heterogeneity, critical aspects of the data used by regional scientists. These characteristics may cause standard econometric techniques to become inappropriate. In this book, I combine several recent research results to construct a comprehensive approach to the incorporation of spatial effects in econometrics. My primary focus is to demonstrate how these spatial effects can be considered as special cases of general frameworks in standard econometrics, and to outline how they necessitate a separate set of methods and techniques, encompassed within the field of spatial econometrics. My viewpoint differs from that taken in the discussion of spatial autocorrelation in spatial statistics - e.g., most recently by Cliff and Ord (1981) and Upton and Fingleton (1985) - in that I am mostly concerned with the relevance of spatial effects on model specification, estimation and other inference, in what I caIl a model-driven approach, as opposed to a data-driven approach in spatial statistics. I attempt to combine a rigorous econometric perspective with a comprehensive treatment of methodological issues in spatial analysis.
Although interest in spatial regression models has surged in recent years, a comprehensive, up-to-date text on these approaches does not exist. Filling this void, Introduction to Spatial Econometrics presents a variety of regression methods used to analyze spatial data samples that violate the traditional assumption of independence between observat
The promising new directions for research and applications described here include alternative model specifications, estimators and tests for regression models and new perspectives on dealing with spatial effects in models with limited dependent variables and space-time data.