Download Free Spatial Point Processes And Their Applications To Biology And Ecology Book in PDF and EPUB Free Download. You can read online Spatial Point Processes And Their Applications To Biology And Ecology and write the review.

Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.
Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th
Understand How to Analyze and Interpret Information in Ecological Point PatternsAlthough numerous statistical methods for analyzing spatial point patterns have been available for several decades, they haven't been extensively applied in an ecological context. Addressing this gap, Handbook of Spatial Point-Pattern Analysis in Ecology shows how the t
This book provides a foundation for modern applied ecology. Much of current ecology research and conservation addresses problems across landscapes and regions, focusing on spatial patterns and processes. This book is aimed at teaching fundamental concepts and focuses on learning-by-doing through the use of examples with the software R. It is intended to provide an entry-level, easily accessible foundation for students and practitioners interested in spatial ecology and conservation.
Este libro de proceedings se edita para ponerlo a disposición de los asistentes a la Internacional Conference on Spatial Pont Process Modelling and its Applications (SPPA), realizada en Benicàssim en abril de 2004.
Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.
This book assembles papers which were presented at the biennial sympo sium in Computational Statistics held und er the a!uspices of the International Association for Statistical Computing (IASC), a section of ISI, the Interna tional Statistical Institute. This symposium named COMPSTAT '94 was organized by the Statistical Institutes of the University of Vienna and the University of Technology of Vienna, Austria. The series of COMPSTAT Symposia started 1974 in Vienna. Mean while they took place every other year in Berlin (Germany, 1976), Leiden (The Netherlands, 1978), Edinburgh (Great Britain, 1980), Toulouse (France, 1982), Prague (Czechoslovakia, 1984), Rom (Italy, 1986), Copenhagen (Den mark, 1988), Dubrovnik (Yugoslavia, 1990) and Neuchätel (Switzerland, 1992). This year we are celebrating the 20th anniversary in Vienna, Austria. It has obviously been observed a movement from "traditional" computa tional statistics with emphasis on methods which produce results quickly and reliably, to computationally intensive methods like resampling procedures, Bayesian methods, dynamic graphics, to very recent areas like neural net works, accentuation on spatial statistics, huge data sets, analysis strategies, etc. For the organization of the symposium, new guidelines worked out by the IASC in written form were in effect this time. The goal was to refresh somehow the spirit of the start of COMPSTAT '74, keep the tradition of the series and ensure a certain continuity in the sequence of biannual meetings.
Proceedings of the 17th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Kaiserslautern, March 3 - 5, 1993
In many fields of science and practice large amounts of data and informationare collected for analyzing and visualizing latent structures as orderings or classifications for example. This volume presents refereed and revised versions of 52 papers selected from the contributions of the 16th AnnualConference of the "German Classification Society". The papers are organized in three major sections on Data Analysis and Classification (1), InformationRetrieval, Knowledge Processing and Software (2), Applications and Special Topics (3). Moreover, the papers were grouped and ordered within the major sections. So, in the first section we find papers on Classification Methods, Fuzzy Classification, Multidimensional Scaling, Discriminant Analysis and Conceptual Analysis. The second section contains papers on Neural Networks and Computational Linguisticsin addition to the mentioned fields. An essential part of the third section attends to Sequence Data and Tree Reconstruction as well as Data Analysis and Informatics in Medicine. As special topics the volume presents applications in Thesauri, Archaeology, Musical Science and Psychometrics.
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.