Download Free Spatial Mode Similarities Among Multiple Longitudinal Modes In Semiconductor Lasers Book in PDF and EPUB Free Download. You can read online Spatial Mode Similarities Among Multiple Longitudinal Modes In Semiconductor Lasers and write the review.

This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.
Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.
Microcavity Semiconductor Lasers Explore this thorough overview of integrable microcavity semiconductor lasers and their applications from two leading voices in the field Attracting a great deal of attention over the last decades for their promising applications in photonic integration and optical interconnects, microcavity semiconductor lasers continue to develop via advances in fundamental physics, theoretical analysis, and numerical simulations. In a new work that will be of interest to researchers and practitioners alike, Microcavity Semiconductor Lasers: Principles, Design, and Applications delivers an application-oriented and highly relevant exploration of the theory, fabrication, and applications of these practical devices. The book focuses on unidirectional emission microcavity lasers for photonic integrated circuits, including polygonal microresonators, microdisk, and microring lasers. After an introductory overview of optical microcavities for microlasers and detailed information of the lasers themselves, including mode structure control and characteristics, and lasing properties, the distinguished authors discuss fabrication and applications of different microcavity lasers. Prospects for future research and potential new applications round out the book. Readers will also benefit from the inclusion of: A thorough introduction to multilayer optical waveguides, the FDTD Method, and Padé Approximation, and deformed, chaos, and unidirectional emission microdisk lasers An exploration of mode analysis for triangle and square microresonators similar as FP Cavity Practical discussions of mode analysis and control for deformed square microlasers An examination of hexagonal microcavity lasers and polygonal microcavities, along with vertical radiation loss for 3D microcavities Perfect for laser specialists, semiconductor physicists, and solid-state physicists, Microcavity Semiconductor Lasers: Principles, Design, and Applications will also earn a place in the libraries of materials scientists and professionals working in the semiconductor and optical industries seeking a one-stop reference for integrable microcavity semiconductor lasers.
This volume presents state-of-the-art information on several important material systems and device structures employed in modern semiconductor lasers. The first two chapters discuss several III-V, II-VI, and VI-VI compound semiconductor material systems employed in diode lasers whose emission spectra cover the range from the blue to the mid-infrared. Subsequent chapters describe the elaboration of special laser structures designed for achieving narrow spectral linewidths and wavelength tunability, as well as high power emission devices. The last chapter covers the development of surface emitting diode lasers, particularly vertical cavity structures. In all five chapters, the underlying device physics as well as the state-of-the-art and future trends are discussed. This book introduces the non-expert to the design and fabrication issues involved in the development of these important laser devices. In addition, it reviews the current status of the different material systems and cavity configurations for the benefit of readers engaged in research in this field. Useful background material related to the fundamentals of lasing in semiconductors can be found in the companion volume, Semiconductor Lasers I: Fundamentals. - Covers important recent advances in materials, design, fabrication, and device structure of semiconductor lasers - aspects not covered in previously existing literature - Introduces the non-expert to the subject - Useful for professionals engaged in research and development - Numerous schematic and data-containing illustrations - Written by leading experts in the field
Ranging from fundamental theoretical concepts to advanced device technologies, this reference/text explores the engineering, characteristics, and performance of specific semiconductor lasers. It defines key principles in electromagnetics, optoelectronics, and laser implementation for novel applications in optical communications, storage, processing, measurement, and sensing. This text prepares students for advanced experimental and theoretical research in semiconductor laser technology and provides the only comprehensive, systematic, and concise description of semiconductor lasers available for an understanding of the physics and parameters of laser operation and function.
Provides information on both state-of-the-art technology and fundamental principles of fully developed solid-state lasers, emphasizing their operational characteristics and physical properties. Six contributions discuss theories and techniques of III-V semiconductor diode lasers, describe various ty
The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications.
The aim of this book is to introduce and explain important physical processes at the heart of the optical properties of semiconductor devices, such as light emitting diodes (LEDs) and semiconductor lasers. It is suitable for a half- semester (or a one-semester) course in Photonics or Optoelectronics at the graduate level in engineering physics, electrical engineering or material science. It offers an advanced analysis of the photo-physics of semiconductors, trying to avoid the use of exceedingly complex formalisms. Particular attention was devoted to offer a clear physical interpretation of all the obtained results. Various worked examples are added throughout all the chapters to illustrate the application of the various formulas discussed in the text.The book covers fundamental aspects of solid state physics, relevant for the calculation and analysis of semiconductor band-structure, and of quantum mechanics of electron-photon interaction. The photo-physics of bulk and quantum well semiconductors are discussed in detail. The final five chapters analyse the physics and properties of important photonic devices: light- emitting diodes (LEDs) and lasers, including Distributed Feedback (DFB) lasers, Vertical-Cavity Surface-Emitting Lasers (VCSELs) and Quantum Cascade Lasers. The general philosophy adopted in these chapters is the following: the fundamental physical processes are investigated, rather than the technological characteristics of the devices.
This book provides a unified and complete theory for semiconductor lasers, covering topics ranging from the principles of classical and quantum mechanics to highly advanced levels for readers who need to analyze the complicated operating characteristics generated in the real application of semiconductor lasers. The author conducts a theoretical analysis especially on the instabilities involved in the operation of semiconductor lasers. A density matrix into the theory for semiconductor lasers is introduced and the formulation of an improved rate equation to help understand the mode competition phenomena which cause the optical external feedback noise is thoroughly described from the basic quantum mechanics. The derivation of the improved rate equation will allow readers to extend the analysis for the different types of semiconductor materials and laser structures they deal with. This book is intended not only for students and academic researchers but also for engineers who develop lasers for the market, as the advanced topics covered are dedicated to real problems in implementing semiconductor lasers for practical use.
This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.