Download Free Spatial Analysis Along Networks Book in PDF and EPUB Free Download. You can read online Spatial Analysis Along Networks and write the review.

In the real world, there are numerous and various events that occur on and alongside networks, including the occurrence of traffic accidents on highways, the location of stores alongside roads, the incidence of crime on streets and the contamination along rivers. In order to carry out analyses of those events, the researcher needs to be familiar with a range of specific techniques. Spatial Analysis Along Networks provides a practical guide to the necessary statistical techniques and their computational implementation. Each chapter illustrates a specific technique, from Stochastic Point Processes on a Network and Network Voronoi Diagrams, to Network K-function and Point Density Estimation Methods, and the Network Huff Model. The authors also discuss and illustrate the undertaking of the statistical tests described in a Geographical Information System (GIS) environment as well as demonstrating the user-friendly free software package SANET. Spatial Analysis Along Networks: Presents a much-needed practical guide to statistical spatial analysis of events on and alongside a network, in a logical, user-friendly order. Introduces the preliminary methods involved, before detailing the advanced, computational methods, enabling the readers a complete understanding of the advanced topics. Dedicates a separate chapter to each of the major techniques involved. Demonstrates the practicalities of undertaking the tests described in the book, using a GIS. Is supported by a supplementary website, providing readers with a link to the free software package SANET, so they can execute the statistical methods described in the book. Students and researchers studying spatial statistics, spatial analysis, geography, GIS, OR, traffic accident analysis, criminology, retail marketing, facility management and ecology will benefit from this book.
This book provides a complete introduction into spatial networks. It offers the mathematical tools needed to characterize these structures and how they evolve in time and presents the most important models of spatial networks. The book puts a special emphasis on analyzing complex systems which are organized under the form of networks where nodes and edges are embedded in space. In these networks, space is relevant, and topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. This subject is therefore at the crossroad of many fields and is of potential interest to a broad audience comprising physicists, mathematicians, engineers, geographers or urbanists. In this book, the author has expanded his previous book ("Morphogenesis of Spatial Networks") to serve as a textbook and reference on this topic for a wide range of students and professional researchers.
This book reports on the latest, cutting-edge scholarship on integrating social network and spatial analyses in the built environment. It sheds light on conceptualization and Implementation of such integration, integration for intra-city level analysis, as well as integration for inter-city level analysis. It explores the use of new data sources concerning human and urban dynamics and provides a discussion of how social network and spatial analyses could be synthesized for a more nuanced understanding of the built environment. As such this book will be a valuable resource for scholars focusing on city-related networks in a number of ‘urban’ disciplines, including but not limited to urban geography, urban informatics, urban planning, urban sociology, and urban studies.
Complex systems analysis has become a fascinating topic in modern research on non-linear dynamics, not only in the physical sciences but also in the life sciences and the social sciences. After the era of bifurcation theory, chaos theory, syn- getics, resilience analysis, network dynamics and evolutionary thinking, currently we observe an increasing interest in critical transitions of dynamic real-world systems in many disciplines, such as demography, biology, psychology, economics, earth sciences, geology, seismology, medical sciences, and so on. The relevance of this approach is clearly re?ected in such phenomena as traf?c congestion, ?nancial crisis, ethnic con?icts, eco-system breakdown, health failures, etc. This has prompted a world-wide interest in complex systems. Geographical space is one of the playgrounds for complex dynamics, as is witnessed by population movements, transport ?ows, retail developments, urban expansion, lowland ?ooding and so forth. All such dynamic phenomena have one feature in common: the low predictability of uncertain interrelated events occurring at different interconnected spatio-temporal scale levels and often originating from different disciplinary backgrounds. The study of the associated non-linear (fast and slow) dynamic transition paths calls for a joint research effort of scientists from different disciplines in order to understand the nature, the roots and the con- quences of unexpected or unpredictable changes in complex spatial systems.
The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.
This volume contains selected essays of Manfred M. Fischer in the field of spatial analysis from the perspective of GeoComputation. The volume is structured in four parts, from broad issues in spatial analysis and the role of GIS to computational intelligence technologies such as neural networks. The third part provides the theoretical framework required for adaptive pattern classifiers in remote sensing environments. The final section outlines the latest in neural spatial interaction modeling.
Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.
Only applications-driven book dealing with commerically-sponsored spatial analysis research. Focuses on business and public sector planning case studies, offering readers a snapshot of the use of spatial analysis across a broad range of areas. Internationally-renowned editors and contributors present a broad variety of global applications, and demonstrate GIS components and spatial methodologies in practice.
Spatializing Social Media charts the theoretical and methodological challenges in analyzing and visualizing social media data mapped to geographic areas. It introduces the reader to concepts, theories, and methods that sit at the crossroads between spatial and social network analysis to unpack the conceptual differences between online and face-to-face social networks and the nonlinear effects triggered by social activity that overlaps online and offline. The book is divided into four sections, with the first accounting for the differences between space (the geometrical arrangements that structure and enable forms of interaction) and place (the mechanisms through which social meanings are attached to physical locations). The second section covers the rationale of social network analysis and the ontological differences, stating that relationships, more than individual and independent attributes, are key to understanding of social behavior. The third section covers a range of case studies that successfully mapped social media activity to geographically situated areas and considers the inflection of homophilous dependencies across online and offline social networks. The fourth and last section of the book explores a range of networks and discusses methods for and approaches to plotting a social network graph onto a map, including the purpose-built R package Spatial Social Media. The book takes a non-mathematical approach to social networks and spatial statistics suitable for postgraduate students in sociology, psychology and the social sciences.
An introductory overview of spatial analysis and statistics through GIS, including worked examples and critical analysis of results.