Download Free Spall Fracture And Dynamic Response Of Materials Book in PDF and EPUB Free Download. You can read online Spall Fracture And Dynamic Response Of Materials and write the review.

The report describes the time-dependent fracture, or spalling, of materials as a result of dynamic response to shock-wave or impulse loading. From stress-wave and fracture-mechanics theory and assuming knowledge of the dynamic properties of the material, theories are developed to predict the stress at the spall plane. The cumulative, energy, stress-rate, and bond-breaking models for the prediction of spall fracture are described, along with the basic criteria of each model.
Shock-induced dynamic fracture of solids is of practical importance in many areas of materials science, chemical physics, engineering, and geophysics. This book, by an international roster of authors, comprises a systematic account of the current state of research in the field, integrating the large amount of work done in the former Soviet Union with the work done in the West. Topics covered include: Wave propagation, experimental techniques and measurements, spallation of materials of different classes (metals, ceramics, glasses, polymers), constitutive models of fracture processes, and computer simulations.
This book presents, in a concise and comprehensive manner, the essential techniques by which shock wave physicists probe the boundaries of material response to impulsive loads. The author is a well-known figure in shock wave physics, having worked for over forty years with many of the outstanding researchers in the field.The book acquaints readers both with modern instrumentation techniques including interferometers such as the DISAR and the VISAR — and with methods that have been established by previous generations of experimentalists — including acoustic measurement techniques and low to moderate strain rate machines.Besides an exposition of the theoretical aspects of shock wave phenomena, it contains large amounts of data on equations of state, spallation thresholds, shock wave attenuation from very high pressures, and elastic constants. Much of this information has been previously unavailable in open publications.The text documents the transition from testing performed with explosives to the use of modern compressed gas guns, which permit much more detailed diagnostics and controlled conditions. In particular, the author pioneered the use of two-stage light gas guns which launch high-density plates against specimens located at the muzzle. The high launch velocity of these guns produced data that represents the highest pressures obtained in the free world at that time./a
The dynamic thermomechanical response of a tungsten heavy alloy is investigated via modeling and numerical simulation. The material of study consists of relatively stiff pure tungsten grains embedded within a more ductile matrix alloy comprised of tungsten, nickel, and iron. Constitutive models implemented for each phase account for finite deformation, heat conduction, plastic anisotropy, strain-rate dependence of flow stress, thermal softening, and thermoelastic coupling. The potentially nonlinear volumetric response in tungsten at large pressures is addressed by a pressure-dependent effective bulk modulus. Our framework also provides a quantitative prediction of the total dislocation density, associated with cumulative strain hardening in each phase, and enables calculation of the fraction of plastic dissipation converted into heat energy. Cohesive failure models are employed to represent intergranular fracture at grain and phase boundaries. Dynamic finite element simulations illustrate the response of realistic volume elements of the polycrystalline microstructure subjected to compressive impact loadings, ultimately resulting in spallation of the material. The relative effects of mixed-mode interfacial failure criteria, thermally-dependent fracture strengths, and grain shapes and orientations upon spall behavior are weighed, with interfacial properties exerting a somewhat larger influence on the average pressure supported by the volume element than grain shapes and initial lattice orientations within the bulk material. Spatially resolved profiles of particle velocities at the free surfaces of the volume elements indicate the degree to which the incident and reflected stress waves are altered by the heterogeneous microstructure.
This volume concerns the fracture and fragmentation of solid materials that occurs when they are subjected to extremes of stress applied at the highest possible rates. The plan for the volume is to address experimental, theoretical, and com putational aspects of high-rate dynamic fracture and fragmentation, with emphasis on recent work. We begin with several chapters in which the emphasis falls on experimental methods and observations. These chapters address both macroscopic responses and the microscopic cause of these re sponses. This is followed by several chapters emphasizing modeling-the physical explanation and mathematical representation of the observations. Some of the models are deterministic, while others focus on the stochastic aspects of the observations. Often, the ov\!rall objective of investigation of dynamic fracture and fragmentation phenomena is provision of a means for predicting the entire course of an event that begins with a stimulus such as an impact and proceeds through a complicated deformation and fracture pro cess that results in disintegration of the body and formation of a rapidly expanding cloud of debris fragments. Analysis of this event usually involves development of a continuum theory and computer code that captures the experimental observations by incorporating models of the important pheno mena into a comprehensive description of the deformation and fracture pro cess. It is to this task that the work of the last few chapters is devoted.
Dynamic fracture in solids has attracted much attention for over a century from engineers as well as physicists due both to its technological interest and to inherent scientific curiosity. Rapidly applied loads are encountered in a number of technical applications. In some cases such loads might be applied deliberately, as for example in problems of blasting, mining, and comminution or fragmentation; in other cases, such dynamic loads might arise from accidental conditions. Regardless of the origin of the rapid loading, it is necessary to understand the mechanisms and mechanics of fracture under dynamic loading conditions in order to design suitable procedures for assessing the susceptibility to fracture. Quite apart from its repercussions in the area of structural integrity, fundamental scientific curiosity has continued to play a large role in engendering interest in dynamic fracture problems In-depth coverage of the mechanics, experimental methods, practical applications Summary of material response of different materials Discussion of unresolved issues in dynamic fracture
Dynamic Failure of Materials and Structures discusses the topic of dynamic loadings and their effect on material and structural failure. Since dynamic loading problems are very difficult as compared to their static counterpart, very little information is currently available about dynamic behavior of materials and structures. Topics covered include the response of both metallic as well as polymeric composite materials to blast loading and shock loadings, impact loadings and failure of novel materials under more controlled dynamic loads. These include response of soft materials that are important in practical use but have very limited information available on their dynamic response. Dynamic fragmentation, which has re-emerged in recent years has also been included. Both experimental as well as numerical aspects of material and structural response to dynamic loads are discussed. Written by several key experts in the field, Dynamic Failure of Materials and Structures will appeal to graduate students and researchers studying dynamic loadings within mechanical and civil engineering, as well as in physics and materials science.
Dynamics of Materials: Experiments, Models and Applications addresses the basic laws of high velocity flow/deformation and dynamic failure of materials under dynamic loading. The book comprehensively covers different perspectives on volumetric law, including its macro-thermodynamic basis, solid physics basis, related dynamic experimental study, distortional law, including the rate-dependent macro-distortional law reflecting strain-rate effect, its micro-mechanism based on dislocation dynamics, and dynamic experimental research based on the stress wave theory. The final section covers dynamic failure in relation to dynamic damage evolution, including the unloading failure of a crack-free body, dynamics of cracks under high strain-rate, and more. Covers models for applications, along with the fundamentals of the mechanisms behind the models Tackles the difficult interdisciplinary nature of the subject, combining macroscopic continuum mechanics with thermodynamics and macro-mechanics expression with micro-physical mechanisms Provides a review of the latest experimental methods for the equation of state for solids under high pressure and the distortional law under high strain-rates of materials
Dynamic Behavior of Materials: Fundamentals, Material Models, and Microstructure Effects provides readers with the essential knowledge and tools necessary to determine best practice design, modeling, simulation and application strategies for a variety of materials while also covering the fundamentals of how material properties and behavior are affected by material structure and high strain rates. The book examines the relationships between material microstructure and consequent mechanical properties, enabling the development of materials with improved performance and more effective design of parts and components for high-rate applications. Sections cover the fundamentals of dynamic material behavior, with chapters studying dynamic elasticity and wave propagation, dynamic plasticity of crystalline materials, ductile fracture, brittle fracture, adiabatic heating and strain localization, response to shock loading, various material characterization methods, such as the Hopkinson Bar Technique, the Taylor Impact Experiment, different shock loading experiments, recent advances in dynamic material behavior, the dynamic behaviors of nanocrystalline materials, bulk metallic glasses, additively manufactured materials, ceramics, concrete and concrete-reinforced materials, geomaterials, polymers, composites, and biomaterials, and much more. Focuses on the relationship between material microstructure and resulting mechanical responses Covers the fundamentals, characterization methods, modeling techniques, applications and recent advances of the dynamic behavior of a broad array of materials Includes insights into manufacturing and processing techniques that enable more effective material design and application
Dynamic Response of Advanced Ceramics Discover fundamental concepts and recent advances in experimental, analytical, and computational research into the dynamic behavior of ceramics In Dynamic Response of Advanced Ceramics, an accomplished team of internationally renowned researchers delivers a comprehensive exploration of foundational and advanced concepts in experimental, analytical, and computational aspects of the dynamic behavior of advanced structural ceramics and transparent materials. The book discusses new techniques used for determination of dynamic hardness and dynamic fracture toughness, as well as edge-on-impact experiments for imaging evolving damage patterns at high impact velocities. The authors also include descriptions of the dynamic deformation behavior of icosahedral ceramics and the dynamic behavior of several transparent materials, like chemically strengthened glass and glass ceramics. The developments discussed within the book have applications in everything from high-speed machining to cutting, grinding, and blast protection. Readers will also benefit from a presentation of emerging trends and directions in research on this subject as well as current challenges in experimental and computational domains, including: An introduction to the history of ceramic materials and their dynamic behavior, including examples of material response to high-strain-rate loading An exploration of high-strain-rate experimental techniques, like 1D elastic stress-wave propagation techniques, shock waves, and impact testing Discussions of the static and dynamic responses of ceramics and the shock response of brittle solids An overview of deformation mechanisms during projectile impact on a confined ceramic, including damage evolution during the nonpenetration and penetration phases. Perfect for researchers, scientists, and engineers working on ballistic impact and shock response of brittle materials, Dynamic Response of Advanced Ceramics will also earn a place in the libraries of industry personnel studying impact-resistant solutions for a variety of applications.