Download Free Spacecraft Structures And Mechanical Testing Book in PDF and EPUB Free Download. You can read online Spacecraft Structures And Mechanical Testing and write the review.

Spacecraft Structures and Mechanisms describes the integral process of developing cost-effective, reliable structures and mechanical products for space programs. Processes are defined, methods are described and examples are given. It has been written by 24 engineers in the space industry, who cover the themes of (1) ensuring a successful mission, and (2) reducing total cost through good designs and intelligent risk management. Topics include: Introduction and requirements (development process, requirements documentation, requirements definition, space mission environments); Analysis (statics, dynamics and load analysis, fatigue and fracture mechanics, mechanics of materials, strength analysis, heat transfer and thermal effects); Verification and quality assurance (verification planning, structural, mechanical and environmental testing, quality assurance and configuration control, compliance documentation, structural reliability analysis, verification criteria - factors of safety, margins of safety, fracture control, test options); Design (spacecraft configuration development, finite element analysis, mechanism development, designing for producibility, structural design, materials, designing to control loads, load cycles, sensitivity analysis); Final verification (model correlation, risk management, launch readiness reviews). For system engineers, mechanical designers, stress analysts, dynamics and load analysts, technical leads, program managers.
Space flight is a comprehensive and innovative part of technology. It encompasses many fields of technology. This monograph presents a cross section of the total field of expertise that is called "space flight". It provides an optimal reference with insight into the design, construction and analysis aspects of spacecraft. The emphasis of this book is put on unmanned space flight, particularly on the construction of spacecraft rather than the construction of launch vehicles.
All typical and special modal and response analysis methods, applied within the frame of the design of spacecraft structures, are described in this book. It therefore addresses graduate students and engineers in the aerospace field.
Designing satellite structures poses an ongoing challenge as the interaction between analysis, experimental testing, and manufacturing phases is underdeveloped. Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing explains the theoretical and practical knowledge needed to perform design of satellite structures. By layering detailed practical discussions with fully developed examples, Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing provides the missing link between theory and implementation. Computational examples cover all the major aspects of advanced analysis; including modal analysis, harmonic analysis, mechanical and thermal fatigue analysis using finite element method. Test cases are included to support explanations an a range of different manufacturing simulation techniques are described from riveting to shot peening to material cutting. Mechanical design of a satellites structures are covered in three steps: analysis step under design loads, experimental testing to verify design, and manufacturing. Stress engineers, lecturers, researchers and students will find Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing a key guide on with practical instruction on applying manufacturing simulations to improve their design and reduce project cost, how to prepare static and dynamic test specifications, and how to use finite element method to investigate in more details any component that may fail during testing.
Random Vibration in Spacecraft Structures Design is based on the lecture notes "Spacecraft structures" and "Special topics concerning vibration in spacecraft structures" from courses given at Delft University of Technology. The monograph, which deals with low and high frequency mechanical, acoustic random vibrations is of interest to graduate students and engineers working in aerospace engineering, particularly in spacecraft and launch vehicle structures design.
The structural materials used in airframe and propulsion systems influence the cost, performance and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering.Introduction to aerospace materials reviews the main structural and engine materials used in aircraft, helicopters and spacecraft in terms of their production, properties, performance and applications.The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters, the book moves on to discuss the properties and production of metals for aerospace structures, including chapters covering strengthening of metal alloys, mechanical testing, and casting, processing and machining of aerospace metals. The next ten chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys, as well as the properties and processing of polymers, composites and wood. Chapters on performance issues such as fracture, fatigue and corrosion precede a chapter focusing on inspection and structural health monitoring of aerospace materials. Disposal/recycling and materials selection are covered in the final two chapters.With its comprehensive coverage of the main issues surrounding structural aerospace materials,Introduction to aerospace materials is essential reading for undergraduate students studying aerospace and aeronautical engineering. It will also be a valuable resource for postgraduate students and practising aerospace engineers. - Reviews the main structural and engine materials used in aircraft, helicopters and space craft in terms of their properties, performance and applications - Introduces the reader to the range of aerospace materials, focusing on recent developments and requirements, and discusses the properties and production of metals for aerospace structures - Chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys