Download Free Spacecraft Electromagnetic Compatibility Technologies Book in PDF and EPUB Free Download. You can read online Spacecraft Electromagnetic Compatibility Technologies and write the review.

This book explores key techniques and methods in electromagnetic compatibility management, analysis, design, improvement and test verification for spacecraft. The first part introduces the general EMC technology of spacecraft, the electromagnetic interference control method and management of electromagnetic compatibility. The second part discusses the EMC prediction analysis technique and its application in spacecraft, while the third presents the EMC design of spacecraft modules and typical equipment. The final two parts address spacecraft magnetic design testing technologies and spacecraft testing technologies. The book also covers the program control test process, the special power control unit (PCU), electric propulsion, PIM test and multipaction testing for spacecraft, making it a valuable resource for researchers and engineers alike.
In the aerospace industry, avoiding operating issues, especially in regard to space missions and satellite structures, is crucial. The vast majority of these issues can be traced to disturbances in the electromagnetic fields used. Electromagnetic Compatibility for Space Systems Design is a critical scholarly resource that examines the applications of electromagnetic compatibility and electromagnetic interference in the space industry. Featuring coverage on a wide range of topics, such as magnetometers, electromagnetic environmental effects, and electromagnetic shielding, this book is geared toward managers, engineers, and researchers seeking current research on the applications of electromagnetic technologies in the aerospace field.
A comprehensive resource that explores electromagnetic compatibility (EMC) for aerospace systems Handbook of Aerospace Electromagnetic Compatibility is a groundbreaking book on EMC for aerospace systems that addresses both aircraft and space vehicles. With contributions from an international panel of aerospace EMC experts, this important text deals with the testing of spacecraft components and subsystems, analysis of crosstalk and field coupling, aircraft communication systems, and much more. The text also includes information on lightning effects and testing, as well as guidance on design principles and techniques for lightning protection. The book offers an introduction to E3 models and techniques in aerospace systems and explores EMP effects on and technology for aerospace systems. Filled with the most up-to-date information, illustrative examples, descriptive figures, and helpful scenarios, Handbook of Aerospace Electromagnetic Compatibility is designed to be a practical information source. This vital guide to electromagnetic compatibility: • Provides information on a range of topics including grounding, coupling, test procedures, standards, and requirements • Offers discussions on standards for aerospace applications • Addresses aerospace EMC through the use of testing and theoretical approaches Written for EMC engineers and practitioners, Handbook of Aerospace Electromagnetic Compatibility is a critical text for understanding EMC for aerospace systems.
This book provides a sound grasp of the fundamental concepts, applications, and practice of EMC. Developments in recent years have resulted in further increases in electrical component density, wider penetration of wireless technologies, and a significant increase in complexity of electrical and electronic equipment. New materials, which can be customized to meet EMC needs, have been introduced. Considerable progress has been made in developing numerical tools for complete system EMC simulation. EMC is now a central consideration in all industrial sectors. Maintaining the holistic approach of the previous edition of Principles and Techniques of Electromagnetic Compatibility, the Third Edition updates coverage of EMC to reflects recent important developments. What is new in the Third Edition? A comprehensive treatment of new materials (meta- and nano-) and their impact on EMC Numerical modelling of complex systems and complexity reduction methods Impact of wireless technologies and the Internet of Things (IoT) on EMC Testing in reverberation chambers, and in the time-domain A comprehensive treatment of the scope and development of stochastic models for EMC EMC issues encountered in automotive, railway, aerospace, and marine applications Impact of EMC and Intentional EMI (IEMI) on infrastructure, and risk assessment In addition to updating material, new references, examples, and appendices were added to offer further support to readers interested in exploring further. As in previous editions, the emphasis is on building a sound theoretical framework, and demonstrating how it can be turned to practical use in challenging applications. The expectation is that this approach will serve EMC engineers through the inevitable future technological shifts and developments.
This book offers essential information on China’s human spacecraft technologies, reviewing their evolution from theoretical and engineering perspectives. It discusses topics such as the design of manned spaceships, cargo spacecraft, space laboratories, space stations and manned lunar and Mars detection spacecraft. It also addresses various key technologies, e.g. for manned rendezvous, docking and reentry. The book is chiefly intended for researchers, graduate students and professionals in the fields of aerospace engineering, control, electronics & electrical engineering, and related areas.
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China’s spacecraft engineering projects. The book’s closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.
This book presents fundamental theories, design and testing methodologies, and engineering applications concerning spacecraft thermal control systems, helping readers gain a comprehensive understanding of spacecraft thermal control systems and technologies. With abundant design methods, advanced technologies and typical applications to help them grasp the basic concepts and principles of engineering applications, it is mainly intended for engineering and technical staff engaged in spacecraft thermal control areas. The book discusses the thermal environments commonly used for space flight missions, rules and regulations for system design, thermal analysis and simulation, and thermal testing methods, as well as the design and validation of the thermal control systems for Chinese spacecraft, such as the Shenzhou spacecraft and Chang’e Lunar Lander and Rover. It also introduces them to communication and remote sensing satellites and presents advanced thermal control technologies developed in recent years, including heat transfer, heat insulation, heating, refrigeration and thermal sensor technologies. Addressing the design and validation of thermal control systems for various types of Chinese spacecraft, the book offers a valuable theoretical and practical reference guide for researchers and engineers alike.
This book focuses on engineering design approaches for spacecraft antennas. Based on their functions in spacecraft, it discusses practical antenna design, measurement and testing. Most of the antennas covered originated at the China Academy of Space Technology (CAST), which has launched almost 300 satellites into orbit. The book presents antenna systems for seven existing spacecraft designs, while also introducing readers to new antenna technologies for spacecraft. This book is intended for researchers, graduate students, and engineers in various fields of aerospace technology and astronautics, especially spacecraft design, communication engineering and related areas.
This book introduces readers to the fundamentals of estimation and dynamical system theory, and their applications in the field of multi-source information fused autonomous navigation for spacecraft. The content is divided into two parts: theory and application. The theory part (Part I) covers the mathematical background of navigation algorithm design, including parameter and state estimate methods, linear fusion, centralized and distributed fusion, observability analysis, Monte Carlo technology, and linear covariance analysis. In turn, the application part (Part II) focuses on autonomous navigation algorithm design for different phases of deep space missions, which involves multiple sensors, such as inertial measurement units, optical image sensors, and pulsar detectors. By concentrating on the relationships between estimation theory and autonomous navigation systems for spacecraft, the book bridges the gap between theory and practice. A wealth of helpful formulas and various types of estimators are also included to help readers grasp basic estimation concepts and offer them a ready-reference guide.
This book provides in-depth explanations of design theories and methods for remote sensing satellites, as well as their practical applications. There have been significant advances in spacecraft remote sensing technologies over the past decade. As the latest edition of the book “Space Science and Technology Research,” it draws on the authors’ vast engineering experience in system design for remote sensing satellites and offers a valuable guide for all researchers, engineers and students who are interested in this area. Chiefly focusing on mission requirements analyses and system design, it also highlights a range of system design methods.