Download Free Space Vehicle Maneuvering Propulsion Dynamics And Control Book in PDF and EPUB Free Download. You can read online Space Vehicle Maneuvering Propulsion Dynamics And Control and write the review.

This textbook introduces space vehicle maneuvering, propulsion, dynamics and control, and discusses the space environment and its influence on the spacecraft propulsion system. This is followed by an in depth description of Keplerian celestial mechanics, co-planar and non-planar orbital transfers involving both impulsive and continuous manoeuvers, and perturbation effects that characterize the real non-Keplerian nature of orbital motion. Dr. Vepa then explains the use of restricted two-body and three-body dynamics as descriptors of spacecraft motion, the limitations of these approach in terms of orbital perturbations and an understanding of the physical source and influence of these perturbations, and principles of the optimal synthesis of trajectories. Featuring many exercises, design case studies, and extensive use of MATLAB/SIMULINK and MATLAB analytical tools, the book is ideal for graduate students, post graduate students, researchers, as well professionals in the industry.
A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR
Presents the established principles underpinning space robotics with a thorough and modern approach. This text is perfect for professionals in the field looking to gain an understanding of real-life applications of manipulators on satellites, and of the dynamics of satellites carrying robotic manipulators and of planetary rovers.
Satellites are used increasingly in telecommunications, scientific research, surveillance, and meteorology, and these satellites rely heavily on the effectiveness of complex onboard control systems. This 1997 book explains the basic theory of spacecraft dynamics and control and the practical aspects of controlling a satellite. The emphasis throughout is on analyzing and solving real-world engineering problems. For example, the author discusses orbital and rotational dynamics of spacecraft under a variety of environmental conditions, along with the realistic constraints imposed by available hardware. Among the topics covered are orbital dynamics, attitude dynamics, gravity gradient stabilization, single and dual spin stabilization, attitude maneuvers, attitude stabilization, and structural dynamics and liquid sloshing.
This book is an up-to-date compendium on spacecraft attitude and orbit control (AOC) that offers a systematic and complete treatment of the subject with the aim of imparting the theoretical and practical knowledge that is required by designers, engineers, and researchers. After an introduction on the kinematics of the flexible and agile space vehicles, the modern architecture and functions of an AOC system are described and the main AOC modes reviewed with possible design solutions and examples. The dynamics of the flexible body in space are then considered using an original Lagrangian approach suitable for the control applications of large space flexible structures. Subsequent chapters address optimal control theory, attitude control methods, and orbit control applications, including the optimal orbital transfer with finite and infinite thrust. The theory is integrated with a description of current propulsion systems, with the focus especially on the new electric propulsion systems and state of the art sensors and actuators.
Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. - The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field - Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits - Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation
This book presents up-to-date concepts and design methods relating to space dynamics and control, including spacecraft attitude control, orbit control, and guidance, navigation, and control (GNC), summarizing the research advances in control theory and methods and engineering practice from Beijing Institute of Control Engineering over the years. The control schemes and systems based on these achievements have been successfully applied to remote sensing satellites, communication satellites, navigation satellites, new technology test satellites, Shenzhou manned spacecraft, Tianzhou freight spacecraft, Tiangong 1/2 space laboratories, Chang'e lunar explorers, and many other missions. Further, the research serves as a guide for follow-up engineering developments in manned lunar engineering, deep space exploration, and on-orbit service missions.
Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application Simulated results and their graphical plots are developed through MATLAB/Simulink code