Download Free Space Pharmacology Book in PDF and EPUB Free Download. You can read online Space Pharmacology and write the review.

“Space Pharmacology” is a review of the current knowledge regarding the use of pharmaceuticals during spaceflights. It is a comprehensive review of the literature, addressing each area of pharmacokinetics and each major physiological system in turn. Every section begins with a topic overview, and is followed by a discussion of published data from spaceflight, and from ground experiments meant to model the spaceflight situation. Includes a discussion looking forward to the new medical challenges we are likely to face on longer duration exploration missions. This book is a snapshot of our current knowledge that also highlights areas of unknown.
2009 life science book award from IAA.
This two-volume handbook, directed at medical professionals and students who are involved in developing the space industry or are academicians doing research in this area, covers current pharmaceutical knowledge about the difference in medication efficacy in space versus on Earth and includes trial results and best practices for the space research and travel industry. The well-known contributors come from an interdisciplinary background and address all aspects of the subject, from the physiological impact of spaceflight to the effects of radiation. As the commercial space industry expands its operations in industry and tourism, the field of space pharmaceuticals is growing commensurately. Existing pharmacological research from space is thoroughly covered in this book, and Earth applications are also described. Potential pharmacological solutions are posed along with the known challenges and examples from existing studies, which are detailed at length. This major reference work is a comprehensive and important medical resource for all space industry players.
This handbook, directed at medical professionals and students who are involved in developing the space industry or are academicians doing research in this area, covers current pharmaceutical knowledge about the difference in medication efficacy in space versus on Earth and includes trial results and best practices for the space research and travel industry. The well-known contributors come from an interdisciplinary background and address all aspects of the subject, from the physiological impact of spaceflight to the effects of radiation. As the commercial space industry expands its operations in industry and tourism, the field of space pharmaceuticals is growing commensurately. Existing pharmacological research from space is thoroughly covered in this book, and Earth applications are also described. Potential pharmacological solutions are posed along with the known challenges and examples from existing studies, which are detailed at length. This major reference work is a comprehensive and important medical resource for all space industry players.
Nicogossian, Arnauld E., Investigator, NASA Center: HQS; Huntoon, Carolyn Leach, Investigator, NASA Center: JSC; Pool, Sam L., Investigator, NASA Center: JSC.
The study of the specific effect of medications under laboratory experimental conditions (G loads, weightlessness, prolonged isolation, etc.) and possible emergency situations (change in environmental gases, radiation effects, upset in meal schedule, etc.) is a necessary stage in the preparation for long space missions. Two basic aspects of the general problems of space pharmacology are: (1) enhance body tolerance to extreme flight factors and (2) natural response to medications during the simulation of some space-flight stresses.
During the past several years there has been a shortage of flight opportunities for biological and medical projects. And those that were available usually had severe restrictions on instrumentation, number of subjects, duration, time allotted for performing the experiments, a possibility for repetition of experiments. It is our hope and expectation that this will change once the international Space Station is in full operation. The advantages of a permanent space station, already demonstrated by the Russian Mir station, are continuous availability of expert crew and a wide range of equipment, possibility of long-term experiments where this is waranted, increased numbers of subjects through larger laboratory space, proper controls in the large 1-G centrifuge, easier repeatability of experiments when needed. The limited number of flight opportunities during recent years probably explains why it has taken so long to acquire a sufficient number of high quality contributions for this seventh volume of Advances in Space Biology and Medicine. While initially the series wassailed at annually appearing volumes, we are now down to a biannual appearance. Hopefully, it will be possible to return to annual volumes in the future when results from space station experimentation at beginning to pour in. The first three chapters of this volume deal with muscle. Fejtek and Wassersug provide a survey of all studies on muscle of rodents flown in space, and include an interesting demography of this aspect of space research. Riley reviews our current knowledge of the effects of long-term spaceflight and re-entry on skeletal muscle, and considers the questions still to be answered before we can be satisfied that long-term space missions, such as on the space station, can be safely undertaken. Stein reviews our understanding of the nutritional and hormonal aspects of muscle loss in spaceflight, and concludes that the protein loss in space could be deleterious to health during flight and after return. Strollo summarizes our understanding of the major endocrine systems on the ground, then considers what we know about their functioning in space, concluding that there is much to be learned about the changes taking place during spaceflight. The many problems of providing life support (oxygen regeneration and food supply) during extended stay on the Moon, on Mars, or in space by means of plant cultivation are discussed by Salisbury. The challenges of utilizing electrophoresis in microgravity for the separation of cells and proteins are illustrated and explained by Bauer and colleagues. Finally, the chapter on teaching of space life sciences by Schmitt shows that this field of science has come of age, but also that its multidisciplinary character poses interesting challenges to teaching it.
Space motion sickness (SMS) is often treated in space with promethazine (PMZ). Common side effects of PMZ administration (50 mg intramuscular) on the ground are drowsiness and impaired cognitive performance. Anecdotal reports indicate that these effects are absent or less pronounced in space. This suggests that the availability of PMZ to the body (bioavailability) and/or the response of the body to PMZ (pharmacodynamics) may change during space flight. Opportunities for clinical research in space are limited. The study described here is our response to a NASA Research Announcement for proposals for flight-based research needed to improve, or answer specific questions about, diagnosis and therapy during space flight, and post-flight rehabilitation. We propose here to evaluate noninvasive methods for determining the bioavailability and pharmacodynamics of PMZ. The specific objectives of the proposed research are to 1) compare pharmacokinetic and pharmacodynamic parameters of PMZ, estimated from saliva and plasma levels after administration of PMZ, 2) estimate the relative bioavailability of the three dosage forms of PMZ that are often administered to control motion sickness symptoms in space, and 3) establish the dose-response relationship of PMZ. We will estimate the bioavailability of an intramuscular injection (IM), oral tablet, and rectal suppository of PMZ in noma1 subjects during ambulatory and antiorthostatic bed rest (ABR) conditions using novel stable isotope techniques. We will compare and contrast the bioavailability of PMZ during normal and microgravity conditions to examine changes in drug absorption and bioavailability during microgravit. Results of this study will validate methods for an approved in-flight investigation with this medication awaiting an opportunity for manifestation..Putcha, Lakshmi and Boyd, Jason L. and Cintron, Nitza and Berens, Kurt L.Johnson Space CenterAEROSPACE MEDICINE; DOSAGE; DRUGS; MOTION SICKNESS; SPACE ADAPTATION SYNDROME; I