Download Free Space Nuclear Radioisotope Systems Book in PDF and EPUB Free Download. You can read online Space Nuclear Radioisotope Systems and write the review.

For operating in severe environments, long life and reliability, radioisotope power systems have proven to be the most successful of all space power sources. Two Voyager missions launched in 1977 to study Jupiter, Saturn, Uranus, Neptune, and their satellites, rings and magnetic fields and continuing to the heliosphere region are still functioning over thirty years later. Radioisotope power systems have been used on the Moon, exploring the planets, and exiting our solar system. There success is a tribute to the outstanding engineering, quality control and attention to details that went into the design and production of radioisotope power generation units. Space nuclear radioisotope systems take the form of using the thermal energy from the decay of radioisotopes and converting this energy to electric power. Reliability and safety are of prime importance. Mission success depends on the ability of being able to safely launch the systems and on having sufficient electrical power over the life of the mission. Graceful power degradation over the life of a mission is acceptable as long as it is within predictable limits. Electrical power conversion systems with inherent redundancy, such as thermoelectric conversion systems, have been favored to date. Also, radioactive decay heat has been used to maintain temperatures in spacecraft at acceptable conditions for other components. This book describes how radioisotope systems work, the requirements and safety design considerations, the various systems that have been developed, and their operational history.
Spacecraft require electrical energy. This energy must be available in the outer reaches of the solar system where sunlight is very faint. It must be available through lunar nights that last for 14 days, through long periods of dark and cold at the higher latitudes on Mars, and in high-radiation fields such as those around Jupiter. Radioisotope power systems (RPSs) are the only available power source that can operate unconstrained in these environments for the long periods of time needed to accomplish many missions, and plutonium-238 (238Pu) is the only practical isotope for fueling them. Plutonium-238 does not occur in nature. The committee does not believe that there is any additional 238Pu (or any operational 238Pu production facilities) available anywhere in the world.The total amount of 238Pu available for NASA is fixed, and essentially all of it is already dedicated to support several pending missions-the Mars Science Laboratory, Discovery 12, the Outer Planets Flagship 1 (OPF 1), and (perhaps) a small number of additional missions with a very small demand for 238Pu. If the status quo persists, the United States will not be able to provide RPSs for any subsequent missions.
Provides details of a variety of radioisotope power systems, shows in what circumstances they surpass other power systems, and provides the history of the space missions in which they have been employed. The book also summarizes the use of on-board reactors and the testing done on reactor rocket thrusters.
This book describes the most complex machine ever sent to another planet: Curiosity. It is a one-ton robot with two brains, seventeen cameras, six wheels, nuclear power, and a laser beam on its head. No one human understands how all of its systems and instruments work. This essential reference to the Curiosity mission explains the engineering behind every system on the rover, from its rocket-powered jetpack to its radioisotope thermoelectric generator to its fiendishly complex sample handling system. Its lavishly illustrated text explains how all the instruments work -- its cameras, spectrometers, sample-cooking oven, and weather station -- and describes the instruments' abilities and limitations. It tells you how the systems have functioned on Mars, and how scientists and engineers have worked around problems developed on a faraway planet: holey wheels and broken focus lasers. And it explains the grueling mission operations schedule that keeps the rover working day in and day out.
In 2003, NASA began an R&D effort to develop nuclear power and propulsion systems for solar system exploration. This activity, renamed Project Prometheus in 2004, was initiated because of the inherent limitations in photovoltaic and chemical propulsion systems in reaching many solar system objectives. To help determine appropriate missions for a nuclear power and propulsion capability, NASA asked the NRC for an independent assessment of potentially highly meritorious missions that may be enabled if space nuclear systems became operational. This report provides a series of space science objectives and missions that could be so enabled in the period beyond 2015 in the areas of astronomy and astrophysics, solar system exploration, and solar and space physics. It is based on but does not reprioritize the findings of previous NRC decadal surveys in those three areas.
Space Nuclear Propulsion for Human Mars Exploration identifies primary technical and programmatic challenges, merits, and risks for developing and demonstrating space nuclear propulsion technologies of interest to future exploration missions. This report presents key milestones and a top-level development and demonstration roadmap for performance nuclear thermal propulsion and nuclear electric propulsion systems and identifies missions that could be enabled by successful development of each technology.
This book explains the physics of nuclear battery operation. It provides a comprehensive background that allows readers to understand all past and future developments in the field. The supply and cost of radioisotopes for use in applications (focused on nuclear batteries) are covered in the initial sections of the text. The interaction of ionizing radiation with matter is discussed as applied to nuclear batteries. The physics of interfacing the radioisotopes to the transducers which represent the energy conversion mechanism for nuclear batteries are described for possible nuclear battery configurations. Last but not least the efficiencies of nuclear battery configurations are discussed combined with a review of the literature on nuclear battery research.