Download Free Source And Channel Aware Resource Allocation For Wireless Networks Book in PDF and EPUB Free Download. You can read online Source And Channel Aware Resource Allocation For Wireless Networks and write the review.

With the growing popularity of wireless networks in recent years, the need to increase network capacity and efficiency has become more prominent in society. This has led to the development and implementation of heterogeneous networks. Resource Allocation in Next-Generation Broadband Wireless Access Networks is a comprehensive reference source for the latest scholarly research on upcoming 5G technologies for next generation mobile networks, examining the various features, solutions, and challenges associated with such advances. Highlighting relevant coverage across topics such as energy efficiency, user support, and adaptive multimedia services, this book is ideally designed for academics, professionals, graduate students, and professionals interested in novel research for wireless innovations.
This book dives into radio resource allocation optimizations, a research area for wireless communications, in a pragmatic way and not only includes wireless channel conditions but also incorporates the channel in a simple and practical fashion via well-understood equations. Most importantly, the book presents a practical perspective by modeling channel conditions using terrain-aware propagation which narrows the gap between purely theoretical work and that of industry methods. The provided propagation modeling reflects industry grade scenarios for radio environment map and hence makes the channel based resource allocation presented in the book a field-grade view. Also, the book provides large scale simulations that account for realistic locations with terrain conditions that can produce realistic scenarios applicable in the field. Most portions of the book are accompanied with MATLAB code and occasionally MATLAB/Python/C code. The book is intended for graduate students, academics, researchers of resource allocation in mathematics, computer science, and electrical engineering departments as well as working professionals/engineers in wireless industry.
This comprehensive resource explores state-of-the-art advances in the successful deployment and operation of small cell networks. A broad range of technical challenges, and possible solutions, are addressed, including practical deployment considerations and interference management techniques, all set within the context of the most recent cutting-edge advances. Key aspects covered include 3GPP standardisation, applications of stochastic geometry, PHY techniques, MIMO techniques, handover and radio resource management, including techniques designed to make the best possible use of the available spectrum. Detailed technical information is provided throughout, with a consistent emphasis on real-world applications. Bringing together world-renowned experts from industry and academia, this is an indispensable volume for researchers, engineers and systems designers in the wireless communication industry.
Information flow in a telecommunication network is accomplished through the interaction of mechanisms at various design layers with the end goal of supporting the information exchange needs of the applications. In wireless networks in particular, the different layers interact in a nontrivial manner in order to support information transfer. In this text we will present abstract models that capture the cross-layer interaction from the physical to transport layer in wireless network architectures including cellular, ad-hoc and sensor networks as well as hybrid wireless-wireline. The model allows for arbitrary network topologies as well as traffic forwarding modes, including datagrams and virtual circuits. Furthermore the time varying nature of a wireless network, due either to fading channels or to changing connectivity due to mobility, is adequately captured in our model to allow for state dependent network control policies. Quantitative performance measures that capture the quality of service requirements in these systems depending on the supported applications are discussed, including throughput maximization, energy consumption minimization, rate utility function maximization as well as general performance functionals. Cross-layer control algorithms with optimal or suboptimal performance with respect to the above measures are presented and analyzed. A detailed exposition of the related analysis and design techniques is provided.
Next generation wireless and mobile communication systems are rapidly evolving to satisfy the demands of various network users. Due to the great success and enormous impact of IP networks, high-speed transmission is now possible for both indoor and outdoor wireless systems, internet access and web browsing have become the ruling paradigm for next generation system. It is envisioned that new generation wireless networks and hand-held terminals will support a wide variety of multimedia services such as multimedia web browsing, video and news on demand, mobile office system, stock market information, and so on, to mobile users anywhere, anytime in an uninterrupted and seamless way with low-powered handsets. The characteristics of wireless links, as well as the desire to maintain connectivity while on the move, offer significant challenges to provisioning quality of service and the related performance is of central interest. Since the resources (such as time, frequency and code) in the wireless segments of such networks are very limited, over-dimensioning the network resource is equivalent to poor capital investment, while congestion at busy hours could mean lost calls and lost revenues. It is therefore critical for wireless network designers to utilise these resources efficiently and effectively. In response to the above demand for next generation wireless and mobile communication systems, this book aims at providing a timely and concise reference of the current activities and findings in the relevant technical fields. The primary goal is to address the key technical issues pertaining to the integrated new systems and present novel technical contributions. The book contains 14 invited chapters from prominent researchers working in this area around the world.
This book deals with the problem of joint source-channel video transmission, i.e., the joint optimal allocation of resources at the application layer and the other network layers, such as data rate adaptation, channel coding, power adaptation in wireless networks, quality of service (QoS) support from the network, and packet scheduling, for efficient video transmission. Real-time video communication applications, such as videoconferencing, video telephony, and on-demand video streaming, have gained increased popularity. However, a key problem in video transmission over the existing Internet and wireless networks is the incompatibility between the nature of the network conditions and the QoS requirements (in terms, for example, of bandwidth, delay, and packet loss) of real-time video applications. To deal with this incompatibility, a natural approach is to adapt the end-system to the network. The joint source-channel coding approach aims to efficiently perform content-aware cross-layer resource allocation, thus increasing the communication efficiency of multiple network layers. Our purpose in this book is to review the basic elements of the state-of-the-art approaches toward joint source-channel video transmission for wired and wireless systems. In this book, we present a general resource-distortion optimization framework, which is used throughout the book to guide our discussions on various techniques of joint source-channel video transmission. In this framework, network resources from multiple layers are assigned to each video packet according to its level of importance. It provides not only an optimization benchmark against which the performance of other sub-optimal systems can be evaluated, but also a useful tool for assessing the effectiveness of different error control components in practical system design. This book is therefore written to be accessible to researchers, expert industrial R&D engineers, and university students who are interested in the cutting edge technologies in joint source-channel video transmission. Contents: Introduction / Elements of a Video Communication System / Joint Source-Channel Coding / Error-Resilient Video Coding / Channel Modeling and Channel Coding / Internet Video Transmission / Wireless Video Transmission / Conclusions
With the rapid evolution of multimedia communications, engineers and other professionals are generally forced to hoard a plethora of different texts and journals to maintain a solid grasp on essential ideas and techniques in the field. Wireless Multimedia Communications provides researchers and students with a primary reference to help readers take maximum advantage of current systems and uncover opportunities to propose new and novel protocols, applications, and services. Extract the Essentials of System Design, Analysis, Implementation A complete technical reference, the text condenses the essential topics of core wireless multimedia communication technologies, convergence, QoS, and security that apply to everything from networking to communications systems, signal processing, and security. From extensive existing literature, the authors distill the central tenets and primary methods of analysis, design, and implementation, to reflect the latest technologies and architectural concepts. The book addresses emerging challenges to inform the system standardization process and help engineers combat the high error rates and stringent delay constraints that remain a significant challenge to various applications and services. Keep Pace with Detailed Techniques to Optimize Technology The authors identify causes of information loss in point-to-point signal transmission through wireless channels, and then they discuss techniques to minimize that loss. They use examples that illustrate the differences in implementing various systems, ranging from cellular voice telephony to wireless Internet access. Each chapter has been carefully organized with the latest information to serve dual purposes as an easy-to-reference guide for professionals and as a principal text for senior-level university students.
With the increased functionality demand for mobile speed and access in our everyday lives, broadband wireless networks have emerged as the solution in providing high data rate communications systems to meet these growing needs. Broadband Wireless Access Networks for 4G: Theory, Application, and Experimentation presents the latest trends and research on mobile ad hoc networks, vehicular ad hoc networks, and routing algorithms which occur within various mobile networks. This publication smartly combines knowledge and experience from enthusiastic scholars and expert researchers in the area of wideband and broadband wireless networks. Students, professors, researchers, and other professionals in the field will benefit from this book’s practical applications and relevant studies.
Tackling problems from the least complicated to the most, Resource Allocation in Uplink OFDMA Wireless Systems provides readers with a comprehensive look at resource allocation and scheduling techniques (for both single and multi-cell deployments) in uplink OFDMA wireless networks relying on convex optimization and game theory to thoroughly analyze performance. Inside, readers will find topics and discussions on: Formulating and solving the uplink ergodic sum-rate maximization problem Proposing suboptimal algorithms that achieve a close performance to the optimal case at a considerably reduced complexity and lead to fairness when the appropriate utility is used Investigating the performance and extensions of the proposed suboptimal algorithms in a distributed base station scenario Studying distributed resource allocation where users take part in the scheduling process, and considering scenarios with and without user collaboration Formulating the sum-rate maximization problem in a multi-cell scenario, and proposing efficient centralized and distributed algorithms for intercell interference mitigation Discussing the applicability of the proposed techniques to state-of-the-art wireless technologies, LTE and WiMAX, and proposing relevant extensions Along with schematics and figures featuring simulation results, Resource Allocation in Uplink OFDMA Wireless Systems is a valuable book for?wireless communications and cellular systems professionals and students.
The first book on Cloud Radio Access Networks (C-RANs), covering fundamental theory, current techniques, and potential applications.