Download Free Sound Synthesis Propagation And Rendering Book in PDF and EPUB Free Download. You can read online Sound Synthesis Propagation And Rendering and write the review.

This book gives a broad overview of research on sound simulation driven by a variety of applications. Vibrating objects produce sound, which then propagates through a medium such as air or water before finally being heard by a listener. As a crucial sensory channel, sound plays a vital role in many applications. There is a well-established research community in acoustics that has studied the problems related to sound simulation for six decades. Some of the earliest work was motivated by the design of concert halls, theaters, or lecture rooms with good acoustic characteristics. These problems also have been investigated in other applications, including noise control and sound design for urban planning, building construction, and automotive applications. Moreover, plausible or realistic sound effects can improve the sense of presence in a virtual environment or a game. In these applications, sound can provide important clues such as source directionality and spatial size. The book first surveys various sound synthesis methods, including harmonic synthesis, texture synthesis, spectral analysis, and physics-based synthesis. Next, it provides an overview of sound propagation techniques, including wave-based methods, geometric-based methods, and hybrid methods. The book also summarizes various techniques for sound rendering. Finally, it surveys some recent trends, including the use of machine learning methods to accelerate sound simulation and the use of sound simulation techniques for other applications such as speech recognition, source localization, and computer-aided design.
This book gives a broad overview of research on sound simulation driven by a variety of applications. Vibrating objects produce sound, which then propagates through a medium such as air or water before finally being heard by a listener. As a crucial sensory channel, sound plays a vital role in many applications. There is a well-established research community in acoustics that has studied the problems related to sound simulation for six decades. Some of the earliest work was motivated by the design of concert halls, theaters, or lecture rooms with good acoustic characteristics. These problems also have been investigated in other applications, including noise control and sound design for urban planning, building construction, and automotive applications. Moreover, plausible or realistic sound effects can improve the sense of presence in a virtual environment or a game. In these applications, sound can provide important clues such as source directionality and spatial size. The book first surveys various sound synthesis methods, including harmonic synthesis, texture synthesis, spectral analysis, and physics-based synthesis. Next, it provides an overview of sound propagation techniques, including wave-based methods, geometric-based methods, and hybrid methods. The book also summarizes various techniques for sound rendering. Finally, it surveys some recent trends, including the use of machine learning methods to accelerate sound simulation and the use of sound simulation techniques for other applications such as speech recognition, source localization, and computer-aided design.
This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments.
This book covers various cutting-edge computing technologies and their applications over data. It discusses in-depth knowledge on big data and cloud computing, quantum computing, cognitive computing, and computational biology with respect to different kinds of data analysis and applications. In this book, authors describe some interesting models in the cloud, quantum, cognitive, and computational biology domains that provide some useful impact on intelligent data (emotional, image, etc.) analysis. They also explain how these computing technologies based data analysis approaches used for various real-life applications. The book will be beneficial for readers working in this area.
Traditionally, say 15 years ago, three-dimensional image analysis (aka computer vi sion) and three-dimensional image synthesis (aka computer graphics) were separate fields. Rarely were expert
Encyclopedia of Computer Graphics and Games (ECGG) is a unique reference resource tailored to meet the needs of research and applications for industry professionals and academic communities worldwide. The ECGG covers the history, technologies, and trends of computer graphics and games. Editor Newton Lee, Institute for Education, Research, and Scholarships, Los Angeles, CA, USA Academic Co-Chairs Shlomo Dubnov, Department of Music and Computer Science and Engineering, University of California San Diego, San Diego, CA, USA Patrick C. K. Hung, University of Ontario Institute of Technology, Oshawa, ON, Canada Jaci Lee Lederman, Vincennes University, Vincennes, IN, USA Industry Co-Chairs Shuichi Kurabayashi, Cygames, Inc. & Keio University, Kanagawa, Japan Xiaomao Wu, Gritworld GmbH, Frankfurt am Main, Hessen, Germany Editorial Board Members Leigh Achterbosch, School of Science, Engineering, IT and Physical Sciences, Federation University Australia Mt Helen, Ballarat, VIC, Australia Ramazan S. Aygun, Department of Computer Science, Kennesaw State University, Marietta, GA, USA Barbaros Bostan, BUG Game Lab, Bahçeşehir University (BAU), Istanbul, Turkey Anthony L. Brooks, Aalborg University, Aalborg, Denmark Guven Catak, BUG Game Lab, Bahçeşehir University (BAU), Istanbul, Turkey Alvin Kok Chuen Chan, Cambridge Corporate University, Lucerne, Switzerland Anirban Chowdhury, Department of User Experience and Interaction Design, School of Design (SoD), University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India Saverio Debernardis, Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy Abdennour El Rhalibi, Liverpool John Moores University, Liverpool, UK Stefano Ferretti, Department of Computer Science and Engineering, University of Bologna, Bologna, Italy Han Hu, School of Information and Electronics, Beijing Institute of Technology, Beijing, China Ms. Susan Johnston, Select Services Films Inc., Los Angeles, CA, USA Chris Joslin, Carleton University, Ottawa, Canada Sicilia Ferreira Judice, Department of Computer Science, University of Calgary, Calgary, Canada Hoshang Kolivand, Department Computer Science, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool, UK Dario Maggiorini, Department of Computer Science, University of Milan, Milan, Italy Tim McGraw, Purdue University, West Lafayette, IN, USA George Papagiannakis, ORamaVR S.A., Heraklion, Greece; FORTH-ICS, Heraklion Greece University of Crete, Heraklion, Greece Florian Richoux, Nantes Atlantic Computer Science Laboratory (LINA), Université de Nantes, Nantes, France Andrea Sanna, Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy Yann Savoye, Institut fur Informatik, Innsbruck University, Innsbruck, Austria Sercan Şengün, Wonsook Kim School of Art, Illinois State University, Normal, IL, USA Ruck Thawonmas, Ritsumeikan University, Shiga, Japan Vinesh Thiruchelvam, Asia Pacific University of Technology & Innovation, Kuala Lumpur, Malaysia Rojin Vishkaie, Amazon, Seattle, WA, USA Duncan A. H. Williams, Digital Creativity Labs, Department of Computer Science, University of York, York, UK Sai-Keung Wong, National Chiao Tung University, Hsinchu, Taiwan Editorial Board Intern Sam Romershausen, Vincennes University, Vincennes, IN, USA
Understanding Virtual Reality: Interface, Application, and Design, Second Edition arrives at a time when the technologies behind virtual reality have advanced dramatically. The book helps users take advantage of the ways they can identify and prepare for the applications of VR in their field. By approaching VR as a communications medium, the authors have created a resource that will remain relevant even as underlying technologies evolve. Included are a history of VR, systems currently in use, the application of VR, and the many issues that arise in application design and implementation, including hardware requirements, system integration, interaction techniques and usability. - Features substantive, illuminating coverage designed for technical or business readers and the classroom - Examines VR's constituent technologies, drawn from visualization, representation, graphics, human-computer interaction and other fields - Provides (via a companion website) additional case studies, tutorials, instructional materials, and a link to an open-source VR programming system - Includes updated perception material and new sections on game engines, optical tracking, VR visual interface software, and a new glossary with pictures
This book puts the focus on serving human listeners in the sound field synthesis although the approach can be also exploited in other applications such as underwater acoustics or ultrasonics. The author derives a fundamental formulation based on standard integral equations and the single-layer potential approach is identified as a useful tool in order to derive a general solution. He also proposes extensions to the single-layer potential approach which allow for a derivation of explicit solutions for circular, planar, and linear distributions of secondary sources. Based on above described formulation it is shown that the two established analytical approaches of Wave Field Synthesis and Near-field Compensated Higher Order Ambisonics constitute specific solutions to the general problem which are covered by the single-layer potential solution and its extensions.
A practitioner's guide to the basic principles of creating sound effects using easily accessed free software. Designing Sound teaches students and professional sound designers to understand and create sound effects starting from nothing. Its thesis is that any sound can be generated from first principles, guided by analysis and synthesis. The text takes a practitioner's perspective, exploring the basic principles of making ordinary, everyday sounds using an easily accessed free software. Readers use the Pure Data (Pd) language to construct sound objects, which are more flexible and useful than recordings. Sound is considered as a process, rather than as data—an approach sometimes known as “procedural audio.” Procedural sound is a living sound effect that can run as computer code and be changed in real time according to unpredictable events. Applications include video games, film, animation, and media in which sound is part of an interactive process. The book takes a practical, systematic approach to the subject, teaching by example and providing background information that offers a firm theoretical context for its pragmatic stance. [Many of the examples follow a pattern, beginning with a discussion of the nature and physics of a sound, proceeding through the development of models and the implementation of examples, to the final step of producing a Pure Data program for the desired sound. Different synthesis methods are discussed, analyzed, and refined throughout.] After mastering the techniques presented in Designing Sound, students will be able to build their own sound objects for use in interactive applications and other projects