Download Free Some Very Strong Hydrogen Bonded Systems Book in PDF and EPUB Free Download. You can read online Some Very Strong Hydrogen Bonded Systems and write the review.

Hydrogen bonded systems play an important role in all aspects of science but particularly chemistry and biology. Notably, the helical structure of DNA is heavily reliant on the hydrogens bonds between the DNA base pairs. Although the area of hydrogen bonding is one that is well established, our understanding has continued to develop as the power of both computational and experimental techniques has improved. Understanding Hydrogen Bonds presents an up-to-date overview of our theoretical and experimental understanding of the hydrogen bond. Well-established and novel approaches are discussed, including quantum theory of ‘atoms in molecules’ (QTAIM); the electron localization function (ELF) method and Car–Parinnello molecular dynamics; the natural bond orbital (NBO) approach; and X-ray and neutron diffraction and spectroscopy. The mechanism of hydrogen bond formation is described and comparisons are made between hydrogen bonds and other types of interaction. The author also takes a look at new types of interaction that may be classified as hydrogen bonds with a focus on those with multicentre proton acceptors or with multicentre proton donors. Understanding Hydrogen Bonds is a valuable reference for experimentalists and theoreticians interested in updating their understanding of the types of hydrogen bonds, their role in chemistry and biology, and how they can be studied.
The weak or non-conventional hydrogen bond has been subject of intense scrutiny over recent years in several fields, in particular in structural chemistry, structural biology, and also in the pharmaceutical sciences. There is today a large body of experimental and theoretical evidenceconfirming that hydrogen bonds like C-H...O, N-H...pi, C-H...pi and even bonds like O-H...metal play distinctive roles in molecular recognition, guiding molecular association, and in determining molecular and supramolecular architectures. The relevant compound classes include organometalliccomplexes, organic and bio-organic systems, and also DNA and proteins. The book provides a comprehensive assessment of this interaction type, and is of interest to all those interested in structural and supramolecular science, including fields as crystal engineering and drug design.
Charge transport through the transfer of protons between molecules has long been recognized as a fundamental process, which plays an important role in many chemical reactions. In particular, proton transfer through Hydrogen (H-) bonds has been identified as the main mechanism, via which many bio logical functions are performed and many properties of such basic substances as proteins and ice can be understood. In this volume, several of these important aspects of the H-bond are rep resented. As the division in different sections already indicates, present day research in proton teansfer in biochemistry, biology, and the physics of water and ice remains highly active and very exciting. Nearly a decade ago, a novel approach to the study of collective proton motion in H-bonded systems was proposed, in which this phenomenon was explained by the propagation of certain coherent structures called solitons. In the years that followed, the approach ofsoliton dynamics was further extended and developed by many researchers around the world, into a legitimate and useful method for the analysis of proton transfer in H-bonded systems. Dr. Stephanos Pnevmatikos, the original Director of this ARW, was one of the pioneers in the application ofsoliton ideas to the study ofcharge transport through H-bonds. Having used similar concepts himself in his research on 2D lattices) he was convinced energy transfer through molecular chains (and that solitons can play an important role in enhancing our understanding of protonic conductivity.
This book uses examples from experimental studies to illustrate theoretical investigations, allowing greater understanding of hydrogen bonding phenomena. The most important topics in recent studies are covered. This volume is an invaluable resource that will be of particular interest to physical and theoretical chemists, spectroscopists, crystallographers and those involved with chemical physics.
Hydrogen bonds are weak attractions, with a binding strength less than one-tenth that of a normal covalent bond. However, hydrogen bonds are of extraordinary importance; without them all wooden structures would collapse, cement would crumble, oceans would vaporize, and all living things would disintegrate into random dispersions of inert matter. Hydrogen Bonding in Biological Structures is informative and eminently usable. It is, in a sense, a Rosetta stone that unlocks a wealth of information from the language of crystallography and makes it accessible to all scientists. (From a book review of Kenneth M. Harmon, Science 1992)
This book distills the knowledge gained from research into atoms in molecules over the last 10 years into a unique, handy reference. Throughout, the authors address a wide audience, such that this volume may equally be used as a textbook without compromising its research-oriented character. Clearly structured, the text begins with advances in theory before moving on to theoretical studies of chemical bonding and reactivity. There follow separate sections on solid state and surfaces as well as experimental electron densities, before finishing with applications in biological sciences and drug-design. The result is a must-have for physicochemists, chemists, physicists, spectroscopists and materials scientists.
This much-cited thesis by J. D. van der Waals, the recipient of the 1910 Nobel Prize in physics, is accompanied by an introductory essay by J. S. Rowlinson and another work by van der Waals on the theory of liquid mixtures. 1988 edition.
Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways in enzyme catalysis and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.
This book is intended as an easy to read supplement to the often brief descriptions of hydrogen bonding found in most undergraduate chemistry and molecular biology textbooks. It describes and discusses current ideas concerning hydrogen bonds ranging from the very strong to the very weak, with introductions to the experimental and theoretical methods involved.
Infrared and Raman Spectroscopy, Principles and Spectral Interpretation, Second Edition provides a solid introduction to vibrational spectroscopy with an emphasis on developing critical interpretation skills. This book fully integrates the use of both IR and Raman spectroscopy as spectral interpretation tools, enabling the user to utilize the strength of both techniques while also recognizing their weaknesses. This second edition more than doubles the amount of interpreted IR and Raman spectra standards and spectral unknowns. The chapter on characteristic group frequencies is expanded to include increased discussions of sulphur and phosphorus organics, aromatic and heteroaromatics as well as inorganic compounds. New topics include a discussion of crystal lattice vibrations (low frequency/THz), confocal Raman microscopy, spatial resolution in IR and Raman microscopy, as well as criteria for selecting Raman excitation wavelengths. These additions accommodate the growing use of vibrational spectroscopy for process analytical monitoring, nanomaterial investigations, and structural and identity determinations to an increasing user base in both industry and academia. - Integrates discussion of IR and Raman spectra - Pairs generalized IR and Raman spectra of functional groups with tables and text - Includes over 150 fully interpreted, high quality IR and Raman reference spectra - Contains fifty-four unknown IR and Raman spectra, with a corresponding answer key