Download Free Some Studies Of Thermal And Photochemical Gas Phase Reactions Book in PDF and EPUB Free Download. You can read online Some Studies Of Thermal And Photochemical Gas Phase Reactions and write the review.

The present monograph appears after the death of Professor V. N. Kondratiev, one of those scientists who have greatly contributed to the foundation of contem porary gas kinetics. The most fundamental idea of chemical kinetics, put for ward at the beginning of the twentieth century and connected with names such as W. Nernst, M. Bodenstein, N. N. Semenov, and C. N. Hinshelwood, was that the complex chemical reactions are in fact a manifestation of a set of simpler elementary reactions involving but a small number of species. V. N. Kondratiev was one of the first to adopt this idea and to start investigations on the elementary chemical reactions proper. These investigations revealed explicitly that every elementary reaction in turn consisted of many elementary events usually referred to as elementary processes. It took some time to realize that an elementary reaction, represented in a very simple way by a macroscopic kinetic equation, can be described on a microscopic level by a generalized Boltzmann equation. Neverheless, up to the middle of the twentieth century, gas kinetics was mainly concerned with the interpretation of complex chemical reactions via a set of elementary reactions. But later on, the situation changed drastically. First, the conditions for reducing microscopic cquations to macroscopic ones were clearly set up. These are essentially based on the fact that the small perturbations of the Maxwell-Boltzmann distribution are caused by the reaction proper.
The chapters in this book are devoted to the elementary reactions of small molecules in the gas phase, with some emphasis on reactions important in combustion. The first three chapters cover experimental measurements made at high temperatures, mainly using shock waves and flames; the final chapter describes discharge flow methods near room temperature. The authors-all active in the fields they describe were asked to aim at a level intermediate between a textbook and a review, designed for readers not already familiar with this branch of chemical kinetics. We hope the book will prove especially useful to research workers in related subjects, to research students, and perhaps as source material for the preparation of lectures. The examples have been chosen to illustrate the theoretical basis of the topics rather than attempt a complete coverage. Professors Wagner and Troe describe the remarkable progress made in recent years in measuring dissociation rates for small molecules. Tests ofunimolecular reaction theories are usually made in the 'fall-off' region of pressure: the kinetics change from first order to second order as the pressure is reduced. For large molecules this region lies below atmospheric pressure and is relatively easily accessible. For molecules with four or less atoms, however, the fall-off region lies well above atmospheric pressure: it has been explored using the high pressure shock tube techniques developed by the authors.
Understanding the mechanism, kinetics and dynamics of elementary gas phase reactions is one of the major goals of chemistry. Such understanding is also essential to predicting and understanding plasma dynamics and optical radiation associated with the spacecraft-atmosphere interactions. The objective of the present research was to provide, based on mainly the ab initio molecular orbital and some dynamics calculations, theoretical information concerning the potential energy surfaces that dictate the kinetics and dynamics of gas phase elementary reactions. The reactions studied include ion-molecule reactions, photochemical reactions and neutral elementary reactions. Many of the systems for which theoretical calculations were performed in the present research are relevant to atmospheric chemistry and chemical lasers. Many systems were chosen based on the experimental studies and in collaboration with scientists at Air Force Research Laboratory, in order to provide them with some new insight that is not easily available without theoretical studies.
Flash Vacuum Thermolysis (FVT) techniques have become well-established methods and occupy an increasingly important place in synthesis. Gas Phase Reactions in Organic Synthesis is a complete review of the applications of flash vacuum thermolysis in organic chemistry; it features new developments in FVT, flow thermolysis and vacuum gas-solid reactions which have appeared in scientific literature since 1980.