Download Free Some Properties Of Non Homogeneous Markov Chains Book in PDF and EPUB Free Download. You can read online Some Properties Of Non Homogeneous Markov Chains and write the review.

Non-Homogeneous Markov Chains and Systems: Theory and Applications fulfills two principal goals. It is devoted to the study of non-homogeneous Markov chains in the first part, and to the evolution of the theory and applications of non-homogeneous Markov systems (populations) in the second. The book is self-contained, requiring a moderate background in basic probability theory and linear algebra, common to most undergraduate programs in mathematics, statistics, and applied probability. There are some advanced parts, which need measure theory and other advanced mathematics, but the readers are alerted to these so they may focus on the basic results. Features A broad and accessible overview of non-homogeneous Markov chains and systems Fills a significant gap in the current literature A good balance of theory and applications, with advanced mathematical details separated from the main results Many illustrative examples of potential applications from a variety of fields Suitable for use as a course text for postgraduate students of applied probability, or for self-study Potential applications included could lead to other quantitative areas The book is primarily aimed at postgraduate students, researchers, and practitioners in applied probability and statistics, and the presentation has been planned and structured in a way to provide flexibility in topic selection so that the text can be adapted to meet the demands of different course outlines. The text could be used to teach a course to students studying applied probability at a postgraduate level or for self-study. It includes many illustrative examples of potential applications, in order to be useful to researchers from a variety of fields.
Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.
Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or another branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book is to relate several aspects of the theory, insofar as this is possible. The author hopes that the book will be useful to mathematicians; but in particular to the workers in applied fields, so the mathematics has been kept as simple as could be managed. The mathematical requisites for reading it are: some knowledge of real-variable theory, and matrix theory; and a little knowledge of complex-variable; the emphasis is on real-variable methods. (There is only one part of the book, the second part of 55.5, which is of rather specialist interest, and requires deeper knowledge.) Appendices provide brief expositions of those areas of mathematics needed which may be less g- erally known to the average reader.
A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models. The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic chains. A complete study of the general properties of homogeneous chains follows. Succeeding chapters examine the fundamental role of homogeneous infinite Markov chains in mathematical modeling employed in the fields of psychology and genetics; the basics of nonhomogeneous finite Markov chain theory; and a study of Markovian dependence in continuous time, which constitutes an elementary introduction to the study of continuous parameter stochastic processes.
This book extends the local central limit theorem to Markov chains whose state spaces and transition probabilities are allowed to change in time. Such chains are used to model Markovian systems depending on external time-dependent parameters. The book develops a new general theory of local limit theorems for additive functionals of Markov chains, in the regimes of local, moderate, and large deviations, and provides nearly optimal conditions for the classical expansions, as well as asymptotic corrections when these conditions fail. Applications include local limit theorems for independent but not identically distributed random variables, Markov chains in random environments, and time-dependent perturbations of homogeneous Markov chains. The inclusion of appendices with background material, numerous examples, and an account of the historical background of the subject make this self-contained book accessible to graduate students. It will also be useful for researchers in probability and ergodic theory who are interested in asymptotic behaviors, Markov chains in random environments, random dynamical systems and non-stationary systems.
Besides the investigation of general chains the book contains chapters which are concerned with eigenvalue techniques, conductance, stopping times, the strong Markov property, couplings, strong uniform times, Markov chains on arbitrary finite groups (including a crash-course in harmonic analysis), random generation and counting, Markov random fields, Gibbs fields, the Metropolis sampler, and simulated annealing. With 170 exercises.
This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.
A long time ago I started writing a book about Markov chains, Brownian motion, and diffusion. I soon had two hundred pages of manuscript and my publisher was enthusiastic. Some years and several drafts later, I had a thousand pages of manuscript, and my publisher was less enthusiastic. So we made it a trilogy: Markov Chains Brownian Motion and Diffusion Approximating Countable Markov Chains familiarly - MC, B & D, and ACM. I wrote the first two books for beginning graduate students with some knowledge of probability; if you can follow Sections 10.4 to 10.9 of Markov Chains you're in. The first two books are quite independent of one another, and completely independent of the third. This last book is a monograph which explains one way to think about chains with instantaneous states. The results in it are supposed to be new, except where there are specific disclaim ers; it's written in the framework of Markov Chains. Most of the proofs in the trilogy are new, and I tried hard to make them explicit. The old ones were often elegant, but I seldom saw what made them go. With my own, I can sometimes show you why things work. And, as I will VB1 PREFACE argue in a minute, my demonstrations are easier technically. If I wrote them down well enough, you may come to agree.