Download Free Some Properties And Applications Of Finite Markov Chains Book in PDF and EPUB Free Download. You can read online Some Properties And Applications Of Finite Markov Chains and write the review.

A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models. The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic chains. A complete study of the general properties of homogeneous chains follows. Succeeding chapters examine the fundamental role of homogeneous infinite Markov chains in mathematical modeling employed in the fields of psychology and genetics; the basics of nonhomogeneous finite Markov chain theory; and a study of Markovian dependence in continuous time, which constitutes an elementary introduction to the study of continuous parameter stochastic processes.
Based on a lecture course given at Chalmers University of Technology, this 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomized algorithms with important applications in optimization and other problems in computing. Amongst the algorithms covered are the Markov chain Monte Carlo method, simulated annealing, and the recent Propp-Wilson algorithm. This book will appeal not only to mathematicians, but also to students of statistics and computer science. The subject matter is introduced in a clear and concise fashion and the numerous exercises included will help students to deepen their understanding.
This book provides a rigorous, comprehensive introduction to the finite Markov chain imbedding technique for studying the distributions of runs and patterns from a unified and intuitive viewpoint, away from the lines of traditional combinatorics. The central theme of this approach is to properly imbed the random variables of interest into the framework of a finite Markov chain, and the resulting representations of the underlying distributions are compact and very amenable to further study of associated properties. The concept of finite Markov chain imbedding is systematically developed, and its utility is illustrated through practical applications to a variety of fields, including the reliability of engineering systems, hypothesis testing, quality control, and continuity measurement in the health care sector. Contents: Finite Markov Chain Imbedding; Runs and Patterns in a Sequence of Two-State Trials; Runs and Patterns in Multi-State Trials; Waiting-Time Distributions; Random Permutations; Applications. Readership: Graduate students and researchers in probability and statistics.
This book provides an undergraduate-level introduction to discrete and continuous-time Markov chains and their applications, with a particular focus on the first step analysis technique and its applications to average hitting times and ruin probabilities. It also discusses classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes. It first examines in detail two important examples (gambling processes and random walks) before presenting the general theory itself in the subsequent chapters. It also provides an introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times, together with a chapter on spatial Poisson processes. The concepts presented are illustrated by examples, 138 exercises and 9 problems with their solutions.
Besides the investigation of general chains the book contains chapters which are concerned with eigenvalue techniques, conductance, stopping times, the strong Markov property, couplings, strong uniform times, Markov chains on arbitrary finite groups (including a crash-course in harmonic analysis), random generation and counting, Markov random fields, Gibbs fields, the Metropolis sampler, and simulated annealing. With 170 exercises.
Focusing on discrete-time-scale Markov chains, the contents of this book are an outgrowth of some of the authors' recent research. The motivation stems from existing and emerging applications in optimization and control of complex hybrid Markovian systems in manufacturing, wireless communication, and financial engineering. Much effort in this book is devoted to designing system models arising from these applications, analyzing them via analytic and probabilistic techniques, and developing feasible computational algorithms so as to reduce the inherent complexity. This book presents results including asymptotic expansions of probability vectors, structural properties of occupation measures, exponential bounds, aggregation and decomposition and associated limit processes, and interface of discrete-time and continuous-time systems. One of the salient features is that it contains a diverse range of applications on filtering, estimation, control, optimization, and Markov decision processes, and financial engineering. This book will be an important reference for researchers in the areas of applied probability, control theory, operations research, as well as for practitioners who use optimization techniques. Part of the book can also be used in a graduate course of applied probability, stochastic processes, and applications.
Markov chains are central to the understanding of random processes. This is not only because they pervade the applications of random processes, but also because one can calculate explicitly many quantities of interest. This textbook, aimed at advanced undergraduate or MSc students with some background in basic probability theory, focuses on Markov chains and quickly develops a coherent and rigorous theory whilst showing also how actually to apply it. Both discrete-time and continuous-time chains are studied. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and exercises and examples drawn both from theory and practice. It will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications.
Markov Chains and Stochastic Stability is part of the Communications and Control Engineering Series (CCES) edited by Professors B.W. Dickinson, E.D. Sontag, M. Thoma, A. Fettweis, J.L. Massey and J.W. Modestino. The area of Markov chain theory and application has matured over the past 20 years into something more accessible and complete. It is of increasing interest and importance. This publication deals with the action of Markov chains on general state spaces. It discusses the theories and the use to be gained, concentrating on the areas of engineering, operations research and control theory. Throughout, the theme of stochastic stability and the search for practical methods of verifying such stability, provide a new and powerful technique. This does not only affect applications but also the development of the theory itself. The impact of the theory on specific models is discussed in detail, in order to provide examples as well as to demonstrate the importance of these models. Markov Chains and Stochastic Stability can be used as a textbook on applied Markov chain theory, provided that one concentrates on the main aspects only. It is also of benefit to graduate students with a standard background in countable space stochastic models. Finally, the book can serve as a research resource and active tool for practitioners.