Download Free Some Numerical Methods For A Class Of Nonlinear Optimal Control Problems Book in PDF and EPUB Free Download. You can read online Some Numerical Methods For A Class Of Nonlinear Optimal Control Problems and write the review.

The 12th conference on "Variational Calculus, Optimal Control and Applications" took place September 23-27, 1996, in Trassenheide on the Baltic Sea island of Use dom. Seventy mathematicians from ten countries participated. The preceding eleven conferences, too, were held in places of natural beauty throughout West Pomerania; the first time, in 1972, in Zinnowitz, which is in the immediate area of Trassenheide. The conferences were founded, and led ten times, by Professor Bittner (Greifswald) and Professor KlCitzler (Leipzig), who both celebrated their 65th birthdays in 1996. The 12th conference in Trassenheide, was, therefore, also dedicated to L. Bittner and R. Klotzler. Both scientists made a lasting impression on control theory in the former GDR. Originally, the conferences served to promote the exchange of research results. In the first years, most of the lectures were theoretical, but in the last few conferences practical applications have been given more attention. Besides their pioneering theoretical works, both honorees have also always dealt with applications problems. L. Bittner has, for example, examined optimal control of nuclear reactors and associated safety aspects. Since 1992 he has been working on applications in optimal control in flight dynamics. R. Klotzler recently applied his results on optimal autobahn planning to the south tangent in Leipzig. The contributions published in these proceedings reflect the trend to practical problems; starting points are often questions from flight dynamics.
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.
A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.
This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the Schr?dinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods. ??
Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
The central focus of this book is the control of continuous-time/continuous-space nonlinear systems. Using new techniques that employ the max-plus algebra, the author addresses several classes of nonlinear control problems, including nonlinear optimal control problems and nonlinear robust/H-infinity control and estimation problems. Several numerical techniques are employed, including a max-plus eigenvector approach and an approach that avoids the curse-of-dimensionality. The max-plus-based methods examined in this work belong to an entirely new class of numerical methods for the solution of nonlinear control problems and their associated Hamilton–Jacobi–Bellman (HJB) PDEs; these methods are not equivalent to either of the more commonly used finite element or characteristic approaches. Max-Plus Methods for Nonlinear Control and Estimation will be of interest to applied mathematicians, engineers, and graduate students interested in the control of nonlinear systems through the implementation of recently developed numerical methods.
"Optimal Control" reports on new theoretical and practical advances essential for analysing and synthesizing optimal controls of dynamical systems governed by partial and ordinary differential equations. New necessary and sufficient conditions for optimality are given. Recent advances in numerical methods are discussed. These have been achieved through new techniques for solving large-sized nonlinear programs with sparse Hessians, and through a combination of direct and indirect methods for solving the multipoint boundary value problem. The book also focuses on the construction of feedback controls for nonlinear systems and highlights advances in the theory of problems with uncertainty. Decomposition methods of nonlinear systems and new techniques for constructing feedback controls for state- and control constrained linear quadratic systems are presented. The book offers solutions to many complex practical optimal control problems.
A collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. This welcome reference for many new results and recent methods is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory.