Download Free Some Linguistic Neutrosophic Hamy Mean Operators And Their Application To Multiattribute Group Decision Making Book in PDF and EPUB Free Download. You can read online Some Linguistic Neutrosophic Hamy Mean Operators And Their Application To Multiattribute Group Decision Making and write the review.

Linguistic neutrosophic numbers (LNNs) can easily describe the incomplete and indeterminate information by the truth, indeterminacy, and falsity linguistic variables (LVs), and the Hamy mean (HM) operator is a good tool to deal with multiple attribute group decision making (MAGDM) problems because it can capture the interrelationship among the multi-input arguments.
In this paper, we combined entropy with linguisti neutrosophic cubic numbers and used it in daily life problems related to a corporation that is going to choose an area supervisor, which is the main target of our proposed model.
Land reclamation has become a significant way for the improvement of ecological environment in mining areas. When selecting the optimal land reclamation scheme, LNNs (linguistic neutrosophic numbers) are suitable to describe the complex fuzzy evaluation information through linguistic truth, indeterminacy and falsity membership degrees.
Safety is the fundamental guarantee for the sustainable development of mining enterprises. As the safety evaluation of mines is a complex system engineering project, consistent and inconsistent, even hesitant evaluation information may be contained simultaneously. Linguistic neutrosophic numbers (LNNs), as the extensions of linguistic terms, are effective means to entirely and qualitatively convey such evaluation information with three independent linguistic membership functions. The aim of our work is to investigate several mean operators so that the safety evaluation issues of mines are addressed under linguistic neutrosophic environment.
The novel multivalued neutrosophic aggregation operators are proposed in this paper to handle the complicated decision-making situations with correlation between specific information and partitioned parameters at the same time, which are based on weighted power partitioned Hamy mean (WMNPPHAM) operators for multivalued neutrosophic sets (MNS) proposed by combining the Power Average and Hamy operators. Firstly, the power partitioned Hamy mean (PPHAM) is capable of capture the correlation between aggregation parameters and the relationship among attributes dividing several parts, where the attributes are dependent definitely within the interchangeable fragment, other attributes in divergent sections are irrelevant. Secondly, because MNS can effectively represent imprecise, insufficient, and uncertain information, we proposed the multivalued neutrosophic PMHAM (WMNPHAM) operator for MNS and its partitioned variant (WMNPPHAM) with the characteristics and examples. Finally, this multiple attribute group decision making (MAGDM) technique is proven to be feasible by comparing with the existing methods to confirm this method’s usefulness and validity.
In order to take into account quantitative and qualitative information in real complex decision making issue, a multiple-valued neutrosophic uncertain linguistic set (MVNULS) is initially proposed, which includes the uncertain linguistic part and the multiple-valued neutrosophic set (MVNS). Consequently, it has the advantages of them in expressing evaluation information.
In this article, we extend the original TODIM (Portuguese acronym for Interactive Multi-Criteria Decision Making) method to the 2-tuple linguistic neutrosophic fuzzy environment to propose the 2TLNNs TODIM method. In the extended method, we use 2-tuple linguistic neutrosophic numbers (2TLNNs) to present the criteria values in multiple attribute group decision making (MAGDM) problems.
The undergraduate teaching audit and evaluation (UTAE) is critically important for university to promote the establishment of a quality assurance system and improve the quality of teaching. In considering the case of UTAE, the essential question that arises strong ambiguity and interaction. The Maclaurin symmetric mean (MSM), as a significant information integration tool, can seize the interrelation among multiple input values more effectively.
To solve the problems related to inhomogeneous connections among the attributes, we introduce a novel multiple attribute group decision-making (MAGDM) method based on the introduced linguistic neutrosophic generalized weighted partitioned Bonferroni mean operator (LNGWPBM) for linguistic neutrosophic numbers (LNNs).