Download Free Some Engineering Properties Of Nickel And High Nickel Alloys Book in PDF and EPUB Free Download. You can read online Some Engineering Properties Of Nickel And High Nickel Alloys and write the review.

Nickel is probably the most versatile of the metallic elements. Among alloys containing nickel are some having high corrosion resistance and others that retain excellent strength and ductility from temperatures approaching ab solute zero to those near 2000 F. Some nickel alloys are strongly magnetic, others are virtually nonmagnetic; some have low rates of thermal expansion, others have high rates; some have high electrical resistivities; some have practically constant moduli of elasticity; one has an "elastic" memory. In addition, nickel is magnetostrictive. With this wide range of characteristics, it is not surprising that there are several thousand alloys containing nickel. It is impossible to consider all of these compositions in this publication and, therefore, several alloys in each of a number of categories have been selected to indicate the properties to be expected of the group. Low-alloy and constructional nickel-containing steels have been excluded on two grounds. To do them justice would require excessive space and, in addition, their applications differ generally from these of the materials under discussion. On the other hand, nickel-containing stainkss steels have been included because many of their applications fall into the same areas as those of a number of the high-nickel alloys. Many of the compositions discussed are proprietary alloys and they are protected by trademarks. A list of the trademarks and their owners is in cluded in the appendix.
This book evaluates the latest developments in nickel alloys and high-alloy special stainless steels by material number, price, wear rate in corrosive media, mechanical and metallurgical characteristics, weldability, and resistance to pitting and crevice corrosion. Nickel Alloys is at the forefront in the search for the most economic solutions to c
Alloying: Understanding the Basics is a comprehensive guide to the influence of alloy additions on mechanical properties, physical properties, corrosion and chemical behavior, and processing and manufacturing characteristics. The coverage considers "alloying" to include any addition of an element or compound that interacts with a base metal to influence properties. Thus, the book addresses the beneficial effects of major alloy additions, inoculants, dopants, grain refiners, and other elements that have been deliberately added to improve performance, as well the detrimental effects of minor elements or residual (tramp) elements included in charge materials or that result from improper melting or refining techniques. The content is presented in a concise, user-friendly format. Numerous figures and tables are provided. The coverage has been weighted to provided the most detailed information on the most industrially important materials.
This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.
The most up-to-date coverage of welding metallurgy aspects and weldability issues associated with Ni-base alloys Welding Metallurgy and Weldability of Nickel-Base Alloys describes the fundamental metallurgical principles that control the microstructure and properties of welded Ni-base alloys. It serves as a practical how-to guide that enables engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to ensure that failures are avoided during fabrication and service. Chapter coverage includes: Alloying additions, phase diagrams, and phase stability Solid-solution strengthened Ni-base alloys Precipitation strengthened Ni-base alloys Oxide dispersion strengthened alloys and nickel aluminides Repair welding of Ni-base alloys Dissimilar welding Weldability testing High-chromium alloys used in nuclear power applications With its excellent balance between the fundamentals and practical problem solving, the book serves as an ideal reference for scientists, engineers, and technicians, as well as a textbook for undergraduate and graduate courses in welding metallurgy.
Governance of the World's Mineral Resources: Beyond the Foreseeable Future provides in-depth information on the geological scarcity of mineral resources. The book demonstrates the urgent need to implement sustainable utilization of mineral resources, in order to ensure that these resources will be sufficiently available for future generations too. The availability of resources, especially for modern technologies, is an increasingly important issue. Some key mineral resources are so geologically scarce that their availability for future generations may not only become substantially less, but also much less affordable than for the current generation unless timely measures are taken. This book provides detailed data and calculations of the availability of mineral resources. The book elaborates on whether and how it is possible to keep providing sufficient mineral resources to a growing world population, and for how long. The book details also how and for how much time it will be possible for all countries, worldwide, to achieve and maintain service delivery of raw materials to their population at levels equivalent to those in developed countries in 2020. Governance of the World's Mineral Resources: Beyond the Foreseeable Future is therefore an important source of knowledge for postgraduates, academics and researchers in the fields of environmental science, sustainability, and geology, as well as anyone in the field of mining and economics who need to account for sustainable provision of mineral resources. - Provides a thorough overview of all considerations related to a sustainable production rate of mineral resources - Comprehensively details scarce mineral resources and describes their applications, worldwide in-use stock increases, and sustainable production rates - Covers all aspects of a sustainable production rate of mineral resources, detailing the current challenges and possible global solutions, both technically and from a policy point of view - Includes detailed studies of thirteen different scarce mineral resources and extensive quantitative data from recent studies and in-depth research
Superalloys form a class of the structural materials for high-temperature applications. Nickel superalloys are extensively used in the high-temperature components of gas turbines due to their excellent creep, fatigue, and corrosion resistance at elevated temperatures. These materials are considered paramagnetic in the range of working temperatures. This book presents the features of the ternary phase diagrams Ni-Al-X (X = {Co, Fe, Nb, Ti, Cr}), effects of the alloying on the long-range order and mechanical properties of the Ni3 Al-based alloys. Description of the strain-induced ferromagnetism in the Ni3Al-based alloys and magnetic control of the failure of gas turbine blades are also included. A separate section is devoted to the analysis of the vibration process and strength change in the single-crystal gas turbine blades. This book includes the review of the new intermetallic cobalt superalloys. The structure, crystal lattice parameters, orientation relationships between phases, mechanical and magnetic properties of the Co3(Al,W)-based alloys are described. Non-destructive magnetic point control of the martensite content in low-magnetic austenitic alloys is a new method for detection of the local sites with internal stresses. This method is useful for the detection of the residual stress in the critical parts of industrial products. This book may be useful for specialists in material science, first-year postgraduate students taking a class in material science and engineering, and engineers developing new alloys for the gas turbine technology.
This is a thoroughly revised version of the original book published in 1986. About half of the contents of the previous version remain essentially unchanged, and one quarter has been rewritten and updated. The rest consists of completely new and extended material. Recent research has focussed on new materials made through "molecular engineering", and computational materials science through ab initio electron structure calculations. Another trend is the ever growing interdisciplinary aspect of both basic and applied materials science. There is an obvious need for reviews that link well established results to the modern approaches. One purpose of this book is to provide such an overview in a specific field of materials science, namely thermophysical phenomena that are intimately connected with the lattice vibrations of solids. This includes, e.g., elastic properties and electrical and thermal transport. Furthermore, this book attempts to present the results in such a form that the reader can clearly see their domain of applicability, for instance if and how they depend on crystal structure, defects, applied pressure, crystal anisotropy etc. The level and presentation is such that the results can be immediately used in research. Graduate students in condensed matter physics, metallurgy, inorganic chemistry or geophysical materials will benefit from this book as will theoretical physicists and scientists in industrial research laboratories.
This bookis intended to be of assistance to the physicist or engineer concerned with designing and building electron devices such as high-vacuum transmitter- or amplifier tubes, gas- or vapor-filled rectifiers, thyratrons, X-ray or luminescent tubes, glow or incandescent lamps, Geiger- or ionization counters, vacuum photo cells, photoconductive cells, selenium-, germanium- or silicon rectifiers or trans istors. For this purpose, extensive information is required concerning the compo sition, behavior and handling of materials as well as a thorough knowledge of high-vacuum technique necessary for processing electron devices after their assembly. The text covers the preparation and working of materials used in these devices; the finishing methods for vacuum tubes (especially degassing, pumping and getter procedures); and different production steps of solid state devices. This book contains about 2300 references indicated in the text by the author's name and reference number. At the end of each chapter the references themselves are listed alphabetically by the author's name and with the title sometimes abbreviated. In accordance with the purpose of the book, "first" publications are quoted only when they contain up-to-date-knowledge of the subject in question. Patents are treated as references. The quotation of a patent gives only a hint of the technical details described there. Mentioning, or not mentioning, a patent does not imply a statement concerning its importance or validity or warning against imitation. Expired patents are named in addition to ones still valid.