Download Free Solving Power System State Estimation Using Orthogonal Decomposition Algorithm Book in PDF and EPUB Free Download. You can read online Solving Power System State Estimation Using Orthogonal Decomposition Algorithm and write the review.

State estimation plays a key role in the operation of power systems. This role becomes more important considering the increasing demand of emerging power market. Many methods have been proposed for power system state estimation, mostly based on Weighted Least Squares (WLS) approach. However, it is well known that Least Absolute Value (LAV) estimators are more efficient in terms of robustness and accuracy. For these estimators there is no closed form solution and each LAV estimator has its own criteria in choosing desired measurements. In this research, two novel LAV estimators are introduced for power system state estimation. The first estimator employs contraction mapping concepts for rejecting redundant measurements. The second estimator is introduced for systems where sparsity and ill-conditioning occur in the system matrix. In the second estimator, Singular Value Decomposition (SVD) method is combined with contraction mapping technique to find the appropriate equations for the estimation. The application of the new estimator is studied on different IEEE power systems for verification. The estimator shows a robust performance in all the test systems, and the estimation error remains comparatively small even in the presence of significant number of bad data points.
State estimation is one of the most important functions in power system operation and control. This area is concerned with the overall monitoring, control, and contingency evaluation of power systems. It is mainly aimed at providing a reliable estimate of system voltages. State estimator information flows to control centers, where critical decisions are made concerning power system design and operations. This valuable resource provides thorough coverage of this area, helping professionals overcome challenges involving system quality, reliability, security, stability, and economy. Engineers are introduced to new techniques for their work in the field, including current measurements and phasor measurement units. Moreover, the book includes a novel discussion on state estimation for distributed systems. Professionals find expert guidance for their current projects and discover cutting-edge developments that will help prepare them for work with future energy management systems.
Offering an up-to-date account of the strategies utilized in state estimation of electric power systems, this text provides a broad overview of power system operation and the role of state estimation in overall energy management. It uses an abundance of examples, models, tables, and guidelines to clearly examine new aspects of state estimation, the testing of network observability, and methods to assure computational efficiency. Includes numerous tutorial examples that fully analyze problems posed by the inclusion of current measurements in existing state estimators and illustrate practical solutions to these challenges. Written by two expert researchers in the field, Power System State Estimation extensively details topics never before covered in depth in any other text, including novel robust state estimation methods, estimation of parameter and topology errors, and the use of ampere measurements for state estimation. It introduces various methods and computational issues involved in the formulation and implementation of the weighted least squares (WLS) approach, presents statistical tests for the detection and identification of bad data in system measurements, and reveals alternative topological and numerical formulations for the network observability problem.
In this paper, we propose an analytical framework to quantify the amount of data samples needed to obtain accurate state estimation in a power system-a problem known as \emph{sample complexity} analysis in computer science. Motivated by the increasing adoption of distributed energy resources into the distribution-level grids, it becomes imperative to estimate the state of distribution grids in order to ensure stable operation. Traditional power system state estimation techniques mainly focus on the transmission network which involve solving an overdetermined system and eliminating bad data. However, distribution networks are typically \emph{underdetermined} due to the large number of connection points and high cost of pervasive installation of measurement devices. In this paper, we consider the recently proposed state-estimation method for underdetermined systems that is based on \emph{matrix completion}. In particular, a \emph{constrained} matrix completion algorithm was proposed, wherein the standard matrix completion problem is augmented with additional equality constraints representing the physics (namely power-flow constraints). We analyze the sample complexity of this general method by proving an upper bound on the sample complexity that depends directly on the properties of these constraints that can lower number of needed samples as compared to the unconstrained problem. To demonstrate the improvement that the constraints add to state estimation, we test the method on a 141-bus distribution network case study and compare it to the traditional least squares minimization state estimation method.
Graph Database and Graph Computing for Power System Analysis Understand a new way to model power systems with this comprehensive and practical guide Graph databases have become one of the essential tools for managing large data systems. Their structure improves over traditional table-based relational databases in that it reconciles more closely to the inherent physics of a power system, enabling it to model the components and the network of a power system in an organic way. The authors’ pioneering research has demonstrated the effectiveness and the potential of graph data management and graph computing to transform power system analysis. Graph Database and Graph Computing for Power System Analysis presents a comprehensive and accessible introduction to this research and its emerging applications. Programs and applications conventionally modeled for traditional relational databases are reconceived here to incorporate graph computing. The result is a detailed guide which demonstrates the utility and flexibility of this cutting-edge technology. The book’s readers will also find: Design configurations for a graph-based program to solve linear equations, differential equations, optimization problems, and more Detailed demonstrations of graph-based topology analysis, state estimation, power flow analysis, security-constrained economic dispatch, automatic generation control, small-signal stability, transient stability, and other concepts, analysis, and applications An authorial team with decades of experience in software design and power systems analysis Graph Database and Graph Computing for Power System Analysis is essential for researchers and academics in power systems analysis and energy-related fields, as well as for advanced graduate students looking to understand this particular set of technologies.