Download Free Solvent Extraction Of Uranium Book in PDF and EPUB Free Download. You can read online Solvent Extraction Of Uranium and write the review.

The purpose of this publication is to update and expand the first edition, which was published in 1983, and to report on later advances in uranium ore processing. It includes background information about the principles of the unit operations used in uranium ore processing and summarizes the current state of the art. Extensive references provide sources for specific technological details.
In recent years the use of liquid—liquid extraction equipment has attracted widespread interest from all major chemical engineering, petroleum and pharmaceutical companies as well as university-based scientists and engineers. Liquid—Liquid Extraction Equipment presents : a critical analysis of all available information, including practical recommendations new ideas on performance enhancement and equipment selection an up-to-date review of research results on equipment performance illustrations of present understanding using well-known equipment a concise survey of past, present and forthcoming procedures The combination of the historical aspects of the subject, with extensive references and illustrations, make this a unique information source. All researchers, in industry and academia, using this type of equipment will find Liquid—Liquid Extraction Equipment an authoritative reference work and a solid basis for future research projects.
The growth in the world's nuclear industry, motivated by peaking world oil supplies, concerns about the greenhouse effect, and domestic needs for energy independence, has resulted in a heightened focus on the need for next-generation nuclear fuel-cycle technologies. Ion Exchange and Solvent Extraction: A Series of Advances, Volume 19 provides a com
Extraction Chromatography
The book emphasizes various aspects of processing secondary sources for recovery of uranium. The field of secondary resource processing is gaining ground over the last few years as it is eco-friendly, economical and in tune with the philosophy of sustainable development. The book is the first one of its type in the area and includes a succint and comprehensive description of related areas of ore mineralogy, resource classification, processing principles involved in uranium solubilisation followed by separation and safety aspects. The clear organisation and the carefully selected figures and tables makes the treatment invaluable for practising engineers, research workers and academic institutions.
Advanced separations technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing techniques not only allow for recycling of useful fuel components for further power generation, but by also separating out the actinides, lanthanides and other fission products produced by the nuclear reaction, the residual radioactive waste can be minimised. Indeed, the future of the industry relies on the advancement of separation and transmutation technology to ensure environmental protection, criticality-safety and non-proliferation (i.e., security) of radioactive materials by reducing their long-term radiological hazard.Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment provides a comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment. Part one covers the fundamental chemistry, engineering and safety of radioactive materials separations processes in the nuclear fuel cycle, including coverage of advanced aqueous separations engineering, as well as on-line monitoring for process control and safeguards technology. Part two critically reviews the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment. The section includes discussions of advanced PUREX processes, the UREX+ concept, fission product separations, and combined systems for simultaneous radionuclide extraction. Part three details emerging and innovative treatment techniques, initially reviewing pyrochemical processes and engineering, highly selective compounds for solvent extraction, and developments in partitioning and transmutation processes that aim to close the nuclear fuel cycle. The book concludes with other advanced techniques such as solid phase extraction, supercritical fluid and ionic liquid extraction, and biological treatment processes.With its distinguished international team of contributors, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment is a standard reference for all nuclear waste management and nuclear safety professionals, radiochemists, academics and researchers in this field. - A comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment - Details emerging and innovative treatment techniques, reviewing pyrochemical processes and engineering, as well as highly selective compounds for solvent extraction - Discusses the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment
The Solvent Extraction of Metal Chelates is a comprehensive account of the solvent extraction (liquid-liquid extraction) of metal chelate complexes. Topics covered include the composition and stability of metal chelates; analytical applications of the solvent extraction of metal chelates; and selective extraction procedures for metals. A theoretical treatment of the solvent extraction of metal chelates is also given. This book is comprised of six chapters and begins with an overview of solvent extraction and how it can be used to solve important theoretical problems concerning the composition and stability of soluble and insoluble metal complexes. The next chapter examines the composition and stability of metal chelates based on the assumption that only uncharged complexes are dissolved and extracted by the organic solvents. A theory of the solvent extraction of metal chelates is then described, paying particular attention to a variety of factors that influence the extraction of metal chelates, including acidity, solubility and instability of the metal chelate, and organic solvent. Some analytical applications of the solvent extraction of metal chelates are also considered. The last two chapters deal with systems and selective extraction procedures for metals. This monograph will be of particular value to inorganic and analytical chemists.
Uranium Processing and Properties describes developments in uranium science, engineering and processing and covers a broad spectrum of topics and applications in which these technologies are harnessed. This book offers the most up-to-date knowledge on emerging nuclear technologies and applications while also covering new and established practices for working with uranium supplies. The book also aims to provide insights into current research and processing technology developments in order to stimulate and motivate innovation among readers. Topics covered include casting technology, plate and sheet rolling, machining of uranium and uranium alloys, forming and fabrication techniques, corrosion kinetics, nondestructive evaluation and thermal modeling.