Download Free Solvability Of Convolution Equations In Spaces Of Distributions On Rn With Restricted Support Book in PDF and EPUB Free Download. You can read online Solvability Of Convolution Equations In Spaces Of Distributions On Rn With Restricted Support and write the review.

The authors apply the results of many years of their own original research to a systematic presentation of the theory of distributions in this monograph which can also be used as a (very expensive) textbook on the theory of distribution for graduate students. The first part is devoted to the Cauchy problem, while the second part deals with the Wiener-Hopf equation and related topics in the theory of boundary value problems for convolution equations. To make their work more accessible to readers new to this field, the authors restrict initial treatment of problems to the half-line and formulate only principal results, in their simplest form. Special results and possible generalizations are presented as problems and exercises. Annotation copyrighted by Book News, Inc., Portland, OR
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
The aim of this book is to provide a comprehensive introduction to the theory of distributions, by the use of solved problems. Although written for mathematicians, it can also be used by a wider audience, including engineers and physicists.The first six chapters deal with the classical theory, with special emphasis on the concrete aspects. The reader will find many examples of distributions and learn how to work with them. At the beginning of each chapter the relevant theoretical material is briefly recalled. The last chapter is a short introduction to a very wide and important field in analysis which can be considered as the most natural application of distributions, namely the theory of partial differential equations. It includes exercises on the classical differential operators and on fundamental solutions, hypoellipticity, analytic hypoellipticity, Sobolev spaces, local solvability, the Cauchy problem, etc.
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.