Download Free Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach Book in PDF and EPUB Free Download. You can read online Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach and write the review.

Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.
Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.Contents:PrefaceSome Notations and ConventionsPreliminaries and Variational PrinciplesQuasilinear Fourth-Order ProblemsKirchhoff ProblemsNonlinear Field ProblemsGradient SystemsVariable Exponent ProblemsReadership: Graduate students and researchers interested in variational methods.Key Features:Each section contains supplementary comments and bibliographical notesThe style and the choice of the material make it accessible to all newcomers to the fieldThere is a rich bibliography and an index to aid the reader
Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications. Additionally, some of the simplest variational methods are evolving as classical tools in the field of nonlinear differential equations. This book is an introduction to variational methods and their applications to semilinear elliptic problems. Providing a comprehensive overview on the subject, this book will support both student and teacher engaged in a first course in nonlinear elliptic equations. The material is introduced gradually, and in some cases redundancy is added to stress the fundamental steps in theory-building. Topics include differential calculus for functionals, linear theory, and existence theorems by minimization techniques and min-max procedures. Requiring a basic knowledge of Analysis, Functional Analysis and the most common function spaces, such as Lebesgue and Sobolev spaces, this book will be of primary use to graduate students based in the field of nonlinear partial differential equations. It will also serve as valuable reading for final year undergraduates seeking to learn about basic working tools from variational methods and the management of certain types of nonlinear problems.
Extremality results proved in this Monograph for an abstract operator equation provide the theoretical framework for developing new methods that allow the treatment of a variety of discontinuous initial and boundary value problems for both ordinary and partial differential equations, in explicit and implicit forms. By means of these extremality results, the authors prove the existence of extremal solutions between appropriate upper and lower solutions of first and second order discontinuous implicit and explicit ordinary and functional differential equations. They then study the dependence of these extremal solutions on the data. The authors begin by developing an existence theory for an abstract operator equation in ordered spaces and offer new tools for dealing with different kinds of discontinuous implicit and explicit differential equation problems. They present a unified approach to the existence of extremal solutions of quasilinear elliptic and parabolic problems and extend the upper and lower solution method to elliptic and parabolic inclusion of hemivariation type using variational and nonvariational methods. Nonlinear Differential Equations in Ordered Spaces includes research that appears for the first time in book form and is designed as a source book for pure and applied mathematicians. Its self-contained presentation along with numerous worked examples and complete, detailed proofs also make it accessible to researchers in engineering as well as advanced students in these fields.
This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.
This textbook introduces variational methods and their applications to differential equations to graduate students and researchers interested in differential equations and nonlinear analysis. It serves as a sampling of topics in critical point theory. Coverage includes: minimizations, deformations results, the mountain-pass and saddle-point theorems, critical points under constraints, and issues of compactness. Applications immediately follow each result for easy assimilation by the reader. This straightforward and systematic presentation includes many exercises and examples to motivate the study of variational methods.
This textbook introduces variational methods and their applications to differential equations to graduate students and researchers interested in differential equations and nonlinear analysis. It serves as a sampling of topics in critical point theory. Coverage includes: minimizations, deformations results, the mountain-pass and saddle-point theorems, critical points under constraints, and issues of compactness. Applications immediately follow each result for easy assimilation by the reader. This straightforward and systematic presentation includes many exercises and examples to motivate the study of variational methods.
Nonlinear functional analysis is an important branch of contemporary mathematics. It's related to topology, ordinary differential equations, partial differential equations, groups, dynamical systems, differential geometry, measure theory, and more. In this book, the author presents some new and interesting results on fundamental methods in nonlinear functional analysis, namely variational, topological and partial order methods, which have been used extensively to solve existence of solutions for elliptic equations, wave equations, Schrödinger equations, Hamiltonian systems etc., and are also used to study the existence of multiple solutions and properties of solutions. This book is useful for researchers and graduate students in the field of nonlinear functional analysis.
This Special Edition contains new results on Differential and Integral Equations and Systems, covering higher-order Initial and Boundary Value Problems, fractional differential and integral equations and applications, non-local optimal control, inverse, and higher-order nonlinear boundary value problems, distributional solutions in the form of a finite series of the Dirac delta function and its derivatives, asymptotic properties’ oscillatory theory for neutral nonlinear differential equations, the existence of extremal solutions via monotone iterative techniques, predator–prey interaction via fractional-order models, among others. Our main goal is not only to show new trends in this field but also to showcase and provide new methods and techniques that can lead to future research.
This book highlights the current state of Lyapunov-type inequalities through a detailed analysis. Aimed toward researchers and students working in differential equations and those interested in the applications of stability theory and resonant systems, the book begins with an overview Lyapunov’s original results and moves forward to include prevalent results obtained in the past ten years. Detailed proofs and an emphasis on basic ideas are provided for different boundary conditions for ordinary differential equations, including Neumann, Dirichlet, periodic, and antiperiodic conditions. Novel results of higher eigenvalues, systems of equations, partial differential equations as well as variational approaches are presented. To this respect, a new and unified variational point of view is introduced for the treatment of such problems and a systematic discussion of different types of boundary conditions is featured. Various problems make the study of Lyapunov-type inequalities of interest to those in pure and applied mathematics. Originating with the study of the stability properties of the Hill equation, other questions arose for instance in systems at resonance, crystallography, isoperimetric problems, Rayleigh type quotients and oscillation and intervals of disconjugacy and it lead to the study of Lyapunov-type inequalities for differential equations. This classical area of mathematics is still of great interest and remains a source of inspiration.